
QuickBooks® Merchant Service SDK

Developer’s Guide for
QuickBooks Merchant Service

Version 3.0

(April 2008)

QBMS SDK version 3.0, released April 2008. (c) 2008 Intuit Inc. All rights
reserved.

QuickBooks and Intuit are registered trademarks of Intuit Inc. All other
trademarks are the property of their respective owners and should be treated
as such.

Acknowledgement: This product includes software developed by the Apache
Software Foundation (<http://www.apache.org>) (c) 1999-2004 The Apache
Software Foundation. All rights reserved.

Intuit Inc.
P.O. Box 7850
Mountain View, CA 94039-7850

For more information about the QuickBooks SDK and the SDK documentation,
visit the intuit developer web site.

http://developer.intuit.com/technical_resources/default.aspx?id=1492
http://developer.intuit.com/technical_resources/default.aspx?id=1492

About This Guide

Who Should Read This Guide . 7
Before You Begin . 7
Terminology. 7
What’s New in This Guide?. 7
Components of the QBMS SDK. 8
Technical Requirements. 8

Chapter 1: Introduction

What is the QBMS SDK? . 11
How Does QBMS Work with QuickBooks?. 12

QBMS and QuickBooks Online Edition. 13
What Do I Need to Do to Integrate with QBMS? . 13
What is a Security Model and How Do I Choose One? . 13

The Desktop Security Model . 14
The Hosted Security Model . 14

Registering Your Application. 15
Communicating with QBMS . 15
What Am I Legally Required to do to Protect Financial Data? 17
What Do My Merchant/Customers Need?. 18

The Merchant’s QBMS Account Must be Set Up for eCommerce 18
Supported QuickBooks and qbXML Versions . 18

Accessing Remote QuickBooks from QBMS Web Applications 19
Integrating a QBMS Application with QuickBooks Point of Sale 19
Where to Go for the Latest QBMS/qbmsXML Information. 19

Chapter 2: Fraud Prevention Features

How Do Developers Use the Fraud Prevention Features? . 21
Fraud Prevention Preference Settings . 21
Notes on Using AVS Features . 22

Chapter 3: Running Credit Card Transactions

What is the QBMS API? . 23
Where Can I Find the Full Syntax Details on the QBMS API? 24
Sending Multiple Transaction Requests in a Single POST . 24
Notes on Running Transactions. 24
Card Swipe and Card Present Transactions . 25

Format of Track2Data . 25
Credit Card Authorizations. 27
Credit Card Capture . 28
Credit Card Charge . 29
Contents 3
(c) 2008 Intuit Inc. All rights reserved.

Credit Card Refunds. 30
CustomerCreditCardTxnVoidOrRefund . 30
CustomerCreditCardRefund . 31

Credit Card Voids . 31
Credit Card Voice Authorizations . 32
Merchant Account Queries . 33
Lodging Transactions . 33
Restaurant Transactions . 33
Merchant-Initiated Batch Close Transactions . 34

Chapter 4: Supporting QuickBooks Reconcile

What is the Reconcile Feature and Why is it Needed?. 35
How Do the QBMS and QB SDKs Support the Reconcile Feature? 35
Saving the Transaction Data Into QuickBooks . 36

Make Sure the CustomerRef and PaymentRef Match the Transaction. 36
Where to Find the Transaction Data You Need . 37
Sample qbXML . 37

Chapter 5: Signing Up for a PTC Test QBMS Merchant Account

Signing Up For a PTC Test Account . 39
Accessing Your Test Account with QuickBooks (Optional) . 40
Restoring QuickBooks to Point to the Live QBMS Environment. 41

Chapter 6: Testing Credit Card Transactions

Testing Credit Card Transactions . 43
Testing Track2 Data . 45
Testing CustomerCreditCardTxnVoid . 45
Testing With QuickBooks . 45
Testing and Diagnosing Web Apps . 46

Chapter 7: Error Handling

Types of Errors Your Application Must Handle . 47
QBMS Connection-Related Errors. 47
QBMS and Card Processor Errors. 48
QBMS Error Recovery. 48

Chapter 8: Accessing QBMS from Desktop Applications

Before You Start . 49
Registration with Intuit Gateways is Required for Access . 49
Security Rules For Your Application . 50
Accessing QBMS: What You Need to Do . 50
Posting qbmsXML to QBMS (No Session Authentication). 50
4 Contents
(c) 2008 Intuit Inc. All rights reserved.

What Your qbmsXML Containing SignonDesktopRq Looks Like 52
What Your Transaction Requests Look Like . 53
How Do You POST the qbmsXML to Production QBMS? . 53
Wait! How Do I POST to the PTC Test Environment? . 54

Sending the User to Get a Connection Ticket . 54
Detecting/Handling Invalid Connection Tickets . 55

Posting qbmsXML to QBMS with Session Authentication . 57
Sending User to Get Intermediate Session Ticket . 59
Transforming the Intermediate (User-Pasted) Session Ticket 61

URLs Used to Access QBMS from Desktop Applications . 62
The SignonDesktop and SignonTicket Request Definitions . 63
Using wincrypt to Store Connection Tickets . 63

Chapter 9: Accessing QBMS From Hosted Web Applications

Task Checklist . 69
Obtaining a QBMS Account . 70
Registration with Intuit Gateways is Required for Access . 70
Hosted Applications Need Certificates to Access Intuit Gateways 70
Security Requirements . 71
How to Present the Client Certificate to QBMS . 71

An ASP.NET Example . 71
A Java Example: Presenting a Client Certificate in a Java Servlet 71

How to Implement Connection Ticket Support . 72
Sending the Merchant to QBMS to Create a Connection Ticket 73
Handling the Connection Ticket POST from QBMS . 73

Getting a Session Ticket for Use in QBMS Transaction POSTs 74
Posting QBMS Transactions to the Data Exchange URL . 76
URLs Used to Access QBMS from Hosted Applications . 76

Chapter 10: SUPPORTING YOUR CUSTOMER/Merchant

Customers With Existing QBMS Accounts. 79

Appendix A: Status Codes Returned in Responses

Appendix B: Signon Requests and Responses XML

Appendix C: The QBMSLib Convenience Library

Structure. 89
Reference . 90

Interfaces. 90
Enumerations . 90
Classes . 90

RequestSender Interface . 91
Contents 5
(c) 2008 Intuit Inc. All rights reserved.

Appendix D: Supported Root Certificate Authorities
6 Contents
(c) 2008 Intuit Inc. All rights reserved.

ABOUT THIS GUIDE

This Developer’s Guide describes the QuickBooks Merchant Service SDK (which we’ll
shorten to QBMS SDK or simply SDK in this guide). The purpose of this guide is to
provide the details you need to know in order to successfully do credit card transactions
from your application via qbmsXML messages.

Who Should Read This Guide

This guide is for developers who are creating desktop or server applications that integrate
with QBMS and optionally with QuickBooks.

In order to create a desktop application, you should know a little about XML and how to
assemble and post XML documents to a web URL (and handle responses) in your
programming language of choice. You should know HTTPS since you need to post requests
via HTTPS to QBMS. If you want to integrate with QuickBooks and/or QuickBooks Point
of Sale as well, you’ll need to know those products and their SDKs.

The knowledge requirements for hosted web applications are similar, but in addition you’ll
need to know how to get and present server and client certificates because QBMS requires a
server certificate from a web app when QBMS makes callbacks to it, and a client certificate
when the web app POSTs requests to the QBMS server.

Before You Begin

Be sure to familiarize yourself with the material contained in the Onscreen Reference for
qbmsXML, which contains the qbmsXML syntax for each request and response message
type.

Terminology
In this guide, the term “desktop application” refers to applications using the desktop
security model in which the application only needs a connection ticket to access a QBMS
account. The term “hosted web application” refers to the hosted application security model,
where the application needs a server certificate (for QBMS callbacks), a client certificate
(for POSTing transactions to QBMS), and a connection ticket.

What’s New in This Guide?

This version of the guide adds descriptions for the following new features available in
QBMS qbmsXML spec 3.0:
Who Should Read This Guide 7
(c) 2008 Intuit Inc. All rights reserved.

• Expansion of the existing CustomerCreditCard transaction requests to support
restaurant authorizations.

• Expansion of the existing CustomerCreditCard transaction requests to support
restaurant and lodging charges.

• A new request, CustomerCreditCardTxnIncrementalAuth, to handle an extension of a
stay at a lodging.

• Support for merchant initiated batch close through a new request called
MerchantBatchCloseRq and a new BatchID field in certain existing credit card
transaction requests.

Components of the QBMS SDK

The QBMS SDK components provides everything you need to handle credit card
transactions in your application via QuickBooks Merchant Services (QBMS) and also
optionally save transaction data into QuickBooks.

The QBMS SDK components consist of:

• The test and production credit card transaction capabilities provided by QBMS.

• The qbmsXML specification that serves as an entry point into the QBMS credit card
transaction functionality.

• A set of software tools, sample programs, and documentation to help you integrate
credit card transaction capabilities into your application.

• Optionally, if you want to subsequently save credit card transaction data into
QuickBooks, you can make use of qbXML functionality that supports the saving of
QBMS credit card transaction data into QuickBooks.

The ability to save credit card data into QuickBooks and use its Reconciliation feature for
card fees and check for funding status is an additional and useful feature. However, your
application is not required to communicate with QuickBooks or use QuickBooks.

NOTE

There are no client-side runtime components. All applications,
whether desktop applications or hosted web applications,
communicate directly through HTTPS communication with the
remote QBMS servers.

Technical Requirements

End users of applications integrated with QBMS must have a valid QuickBooks Merchant
Service account. They can obtain an account online from QBMS or by phone.
8 About This Guide
(c) 2008 Intuit Inc. All rights reserved.

http://www.QuickBooksMerchantService.com

NOTE

A web link will be provided for third-party developer so they
can automatically direct their customer/merchants to QBMS
web sites to perform an online signup.

End users of applications that integrate QBMS transaction data with QuickBooks must also
have a version of QuickBooks that supports the qbXML specification 4.1 and greater. Only
QuickBooks versions 2005 R5, QuickBooks Enterprise Solutions 5.0 R4 and greater
provide this support. (Support for Refund transactions in QuickBooks is only available
beginning with QuickBooks 2006 and SDK version 5.0)

However, because QuickBooks 2008 supports the latest Payment Application Data Security
Standard (PA DSS) requirements, we strongly recommend the use of QuickBooks 2008 and
later, and qbmsXML spec 2.0 and later.
Technical Requirements 9
(c) 2008 Intuit Inc. All rights reserved.

10
(c) 2008 Intuit Inc. All rights reserved.

1

INTRODUCTION 1

This chapter contains a basic overview of the QBMS SDK.

Where to Find More Information

To find more information about the QBMS SDK, refer to the QBMS Integration Center
website. In particular, you’ll want to consult the SDK knowledgebase.

What is the QBMS SDK?
The QBMS SDK is an XML-based API that your application can use for credit card
transactions using the QuickBooks Merchant Service (QBMS). The QBMS SDK supports
card present, card not present, card swipe, void, and refund transactions as follows:

• Charge the customer’s credit card (make a sale).

• Get an authorization for a transaction to be captured at a later time.

• Charge a transaction previously authorized over phone (voice auth).

• Capture a transaction previously authorized. Currently, there must be one and only one
Capture operation for each Authorization. (Multiple captures for one authorization are
not supported.)

• Void a previous transaction, including authorizations, charges, or refunds. Notice that
this will succeed only if the transaction has not yet been settled.

• Obtain a refund.

• Issue one request that automatically results in a void or a refund based on transaction
times and using only the original QBMS transaction ID rather than a credit card
number.

• Invoke a merchant account query to determine certain things about the current
merchant account, such as the credit card types the merchant accepts.

• In the credit card transactions, provide additional support for the restaurant and lodging
industry.

Table 1-1 on page 12 shows the functionality provided.
What is the QBMS SDK? 11
Intuit Confidential (c) 2008 Intuit Inc. All rights reserved.

http://developer.intuit.com/qbms/support/knowledgebase/
http://developer.intuit.com/qbms/integration_center

Table 1-1 QBMS Functionality At a Glance

How Does QBMS Work with QuickBooks?

You can use the QBMS SDK only to do transactions via QBMS. But that would not take
full advantage of its benefits, namely, the ability to save QBMS transaction request data
into QuickBooks. Saving QBMS data into QuickBooks enables the merchant to use the
QuickBooks Reconcile feature to account for credit card transaction fees and to get funding
status.

If you intend to save QBMS transaction data into QuickBooks, then you’ll be saving certain
parts of the transaction request and the transaction response for inclusion in certain QB
SDK transaction requests. The QB SD

K SalesReceiptRq, ReceivePaymentRq, and ARRefundCreditCardRq requests all accept
QBMS transaction data. For more information, see Chapter 4, “Supporting QuickBooks
Reconcile.”

Feature Comment

Core Functionality Ability to process credit cards through QBMS, either swiped or card
not present.

Supported transactions Authorization
Incremental Authorizations (for extending a guest visit at a lodging)
Capture (previous authorization)
Credit Card Charge/Sale
Merchant account query
Refund
Voice authorization
Void
VoidOrRefund (uses transaction ID, not credit card number,
automatically determines whether to issue a void or a refund)

Key supported transaction features Card security codes (such as CVC2, CVV2, CID)

Card swipe (via the Track2Data field in transactions)

AVS (address verification)

Credit Cards Supported Visa
MasterCard
American Express
Discover
Diner’s Club
JCB

Supported Integrations with
QuickBooks

Transaction data from QBMS can be saved in QuickBooks via the QB
SDK SalesReceiptAdd, ReceivePaymentAdd, and
ARRefundCreditCardAdd requests. Once this data is saved into
QuickBooks, credit card fees can be accounted for using the
Reconciliation feature and Get Funding Status.

Note: We strongly recommend the use of qbmsXML 2.0 along with
qbXML 6.0 and QB 2008 or greater, because this combination
supports the latest PA DSS requirements.

Note: the earliest qbXML spec and QuickBooks versions that support
QBMS data is qbXML 4.1/QuickBooks 2005 R5, QBES 5.0 R4.
12 Chapter 1: Introduction
Intuit Confidential (c) 2008 Intuit Inc. All rights reserved.

QBMS and QuickBooks Online

Desktop and hosted applications can integrate with QuickBooks Online (QBO). However,
QBO does not currently support the Reconciliation feature.

What Do I Need to Do to Integrate with QBMS?
The following checklist describes everything that you must do:

1. Decide on the security model that your application will use, desktop or hosted). For a
description of these models, see “What is a Security Model and How Do I Choose
One?.”)

2. Register your application with the developer application gateway, at appreg.intuit.com.
For more details, see “Registering Your Application.”

3. If you are using the hosted security model, your application needs a server certificate
and a client certificate to present to QBMS, so you need to obtain these. For the server
certificate, Appendix D provides a list of root Certificate Authorities that are known to
work with QBMS. The client certificate you must obtain from IDN by issuing a
certificate signing request (CSR) to IDN as described at appreg.intuit.com.

4. Sign up for a QBMS account for testing purposes. For details, see Chapter 5, “Signing
Up for a PTC Test QBMS Merchant Account.”

5. Implement communication with QBMS (see “Communicating with QBMS”).

a. If you choose the desktop security model, you’ll need to implement communication
with QBMS following the material in Chapter 8, “Accessing QBMS from Desktop
Applications.”

b. If you choose the hosted security model, you’ll need to implement communication
with QBMS following the material in Chapter 9, “Accessing QBMS From Hosted
Web Applications.”

6. Test the transactions your application will be performing. For details, see Chapter 6,
“Testing Credit Card Transactions.”

What is a Security Model and How Do I Choose One?

For a quick fact sheet on security models, check out the security model page at the QBMS
Integration Center.

In order to choose the right security model for your implementation, you’ll need to know a
bit of background information about the desktop model and the hosted security models.
What Do I Need to Do to Integrate with QBMS? 13
Intuit Confidential (c) 2008 Intuit Inc. All rights reserved.

http://appreg.intuit.com
http://appreg.intuit.com
http://developer.intuit.com/qbms/integration_center/?id=1162
http://developer.intuit.com/qbms/integration_center/?id=1162

The Desktop Security Model

In the desktop security model, permission to access a QBMS account to carry out
transactions is granted by the account owner by means of a connection ticket. This ticket is
created by QBMS for the QBMS account owner, then is copied by the QBMS account
owner and pasted into your application. Your application encrypts it and stores it for
subsequent use in QBMS communication. This ticket is valid until the account owner
cancels it.

In this model, any application that has that connection ticket can access the QBMS account
for transactions, which is why your application must protect it by encrypting it. If you are
implementing a desktop application that is not accessible from the Internet, this security
model is sufficient.

In this model, additional security is provided if the QBMS account owner desires it. The
account owner can create the connection ticket with session authentication, so the account
owner has to log on to the owner’s QBMS account at the start of every session. So even if
the connection ticket were somehow stolen, no transactions could occur unless the QBMS
account owner first logged on.

Using Desktop Security with Applications Accessible via Internet

If you are implementing an application that is accessible from the Internet, you can still use
the desktop security model if you take the following precautions:

1. Does your application support credit card refund or void transactions? If it does

a. For refund or void transactions, use only connection tickets that have session
authentication. This will require the QBMS account owner to logon at the start of
every session.

b. Alternatively, consider the hosted security model.

The Hosted Security Model

The hosted security model is the one used by hosted web applications. Like the desktop
security model, permission to access a QBMS account to carry out transactions is granted
by the account owner by means of the connection ticket. However, unlike the desktop
model, there is no copy and paste of the connection ticket: the ticket is simply POSTed
from QBMS to the hosted application. Also, in the hosted security model, connection
tickets cannot have session authentication.

An additional level of security is provided in the hosted model through the use of
certificates. Hosted web applications must have a server certificate in order to handle
QBMS callbacks and they must also have a client certificate to POST transaction requests
to QBMS. (A list of root certificate authorities that are known to work with QBMS are
provided in Appendix D.)
14 Chapter 1: Introduction
Intuit Confidential (c) 2008 Intuit Inc. All rights reserved.

The hosted security model can be used for most types of applications but is required for
hosted applications that are accessible over the Internet and that support multiple
merchants. Also, you might want to consider this model if your application is an Internet-
accessible application that supports refund and void transactions.

Registering Your Application
For the best, and up-to-date information on application registration, see the Register Your
Application page at the QBMS Integration Center.

All applications are required to register with IDN before they can access QBMS. If you
don’t register, the Intuit gateways won’t let your application into the QBMS data centers.

To register, visit appreg.intuit.com. (Additional registration instructions are located at the
IDN developer website.)

Keep in mind there are two separate environments that you need to register for:

• Register your application with IDN to use the PTC test environment, to test your
application.

• Register your application with IDN to use the QBMS production environment when
you’re ready to test live or go live.

IMPORTANT

After registering for PTC, you will be given an AppID that you
use only to communicate with PTC. After registering for
production, you will be given a different AppID that you use
only to communicate with production QBMS. The AppID for
the PTC test environment will not work with QBMS production
and vice versa!

Communicating with QBMS

Figure 1-1 provides an overview of the things you need to do to communicate with QBMS.
Some of them are one time tasks, such as getting certificates (hosted web applications) and
registering your application. Some tasks, like getting a connection ticket, you need to get do
once, but perhaps more than once if the merchant cancels the ticket. Other tasks, such as
presenting certificates (hosted applications) and POSTing requests, are ongoing tasks that
your application does automatically.
Registering Your Application 15
Intuit Confidential (c) 2008 Intuit Inc. All rights reserved.

appreg.intuit.com
http://developer.intuit.com/qbms/integration_center/?id=1294
http://developer.intuit.com/qbms/integration_center/?id=1294
http://developer.intuit.com/qbms/integration_center/?id=1294

Figure 1-1 What needs to happen to communicate with QBMS

In Figure 1-1, notice that these tasks are the same for both production QBMS and for the
PTC test environment: the only difference will be the URLs that are used, and the AppIDs
16 Chapter 1: Introduction
Intuit Confidential (c) 2008 Intuit Inc. All rights reserved.

will be different. (However, you can use the same valid server certificate and client
certificate.) For details on the URLs used for product and PTC, see Chapter 8, “Accessing
QBMS from Desktop Applications,” and Chapter 9, “Accessing QBMS From Hosted Web
Applications.”

More About the Connection Ticket Task

As shown in Figure 1-1, your application needs to be granted permission to transact on
behalf of a given merchant. This permission is represented by a connection ticket which is
provided to your application as a result of the merchant executing a connection wizard
hosted by QuickBooks Merchant Services. Upon completion of that wizard the connection
ticket is POSTed back to a hosted web application or cut and pasted by the merchant into a
desktop application. Your application need only open a browser to a specific URL for the
merchant to complete the wizard. How to do this for desktop applications is shown in
Chapter 8, “Accessing QBMS from Desktop Applications,” and how to do it for hosted
applications is shown in Chapter 9, “Accessing QBMS From Hosted Web Applications.”

More About the Certificates Task

When you POST qbmsXML requests to our servers over HTTPS from a hosted web
application, it must present a client certificate signed by Intuit. This is described in Chapter
9, “Accessing QBMS From Hosted Web Applications.”

Parsing the qbmsXML Response

After you POST, you’ll need to parse the response qbmsXML to determine if the
transaction was successful and to ensure that the fraud-prevention checks (i.e. zip code and/
or Card Security Code verification) meet the standards set by your application and/or the
merchant's preferences.

In addition, for QBMS merchants who use QuickBooks, your application should:

a. Parse the response qbmsXML to obtain the credit card transaction result data

b. Send the credit card transaction result data to QuickBooks as part of a Sales
Receipt, Payment Receipt, or Credit Card Refund to support QuickBooks' ability to
check funding status and reconcile credit card transactions, including transaction
fees, etc

What Am I Legally Required to do to Protect Financial Data?
Applications that access cardholder information using the SDK are required to follow the
payment application data security standard (PA DSS) standard established by the payment
card industry, which specifies how cardholder data must be protected. For details on this
requirement, please refer to the Payment Card Industry (PCI) Security Standards Council
website https://www.pcisecuritystandards.org/.
What Am I Legally Required to do to Protect Financial Data? 17
Intuit Confidential (c) 2008 Intuit Inc. All rights reserved.

www.pcisecuritystandards.org

However, there are a few items we’d especially like to draw attention to. Notice that you
cannot store card security code (CVC2, CVV2, etc) data, and you cannot store Track2 data.
The QBMS transaction data brought into QuickBooks must mask the credit card number: it
should all be lowercase x except for the last four digits, with no dashes.

What Do My Merchant/Customers Need?

Before your merchant/customers can use your application, they must have a valid
QuickBooks Merchant Service account. They can obtain an account online from QBMS or
by phone.

NOTE

A web link will be provided for third-party developer so they
can automatically direct their customers/merchants to QBMS
web sites to perform an online signup.

The Merchant’s QBMS Account Must be Set Up for eCommerce

To accept SDK-based transactions, when the merchant applies for a QBMS account, the
merchant must check the "eCommerce or compatible third-party software" box on the
application form. (If the merchant already has a QBMS account but is not yet set up for
eCommerce, the merchant can upgrade the account.)

Also, when a merchant applies for a QBMS account, by default the account is configured to
accept Visa, Discover, and MasterCard. To accept American Express the merchant must
explicitly request this on their online (or phone-based) application. If the merchant has an
existing account with American Express, QBMS Customer Service can link those accounts
with their QBMS account.

Supported QuickBooks and qbXML Versions

If your application integrates QBMS transaction data with QuickBooks, the merchant must
also have a version of QuickBooks that supports the QBMS SDK. We strongly recommend
the use of qbXML specification 6.0 and greater and QuickBooks 2008 and Enterprise
version 8 or greater, because these support the latest PCI/PA DSS standards required by
card payment processors.

See the QBMS release notes for a full list of supported versions.
18 Chapter 1: Introduction
Intuit Confidential (c) 2008 Intuit Inc. All rights reserved.

http://www.QuickBooksMerchantService.com

Accessing Remote QuickBooks from QBMS Web Applications
If you want your hosted web application to access a QuickBooks company at a remote
location, say at a customer/merchant’s system, you can do so using the QuickBooks Web
Connector. To see how to do this, please refer to the QuickBooks Web Connector
Programmer’s Guide included with the QB SDK.

Integrating a QBMS Application with QuickBooks Point of Sale

It is possible integrate an application both with QB POS and with QBMS. One typical way
that this is used is that in QBPOS, merchants use two key transactions for sales - Sales
Orders (most commonly used for online transactions) that are fulfilled later in the store by
the retailer, and Sales Receipts (immediate fulfillment). In either case, we recommend use
of QBMS for authorizing & capturing the credit card funds after fulfillment.

Where to Go for the Latest QBMS/qbmsXML Information
QBMS may provide or change features between releases of the SDK package. To find out
about these changes, which are usually enhancements and improvements, go to the IDN
Forums at the IDN website.
Accessing Remote QuickBooks from QBMS Web Applications 19
Intuit Confidential (c) 2008 Intuit Inc. All rights reserved.

http://idnforums.intuit.com/
http://idnforums.intuit.com/

20 Chapter 1: Introduction
Intuit Confidential (c) 2008 Intuit Inc. All rights reserved.

CHAPTER 2 1

Fraud Prevention Features 1

QuickBooks Merchant Service has fraud prevention features to allow merchants to set
preferences for address verification (AVS) and for card security code checks. See “Fraud
Prevention Preference Settings” for the default settings and the other settings available for
the merchant.

To support the fraud prevention features, QBMS provides a web-based tool called the
Merchant Service Center (MSC). This tool allows QuickBooks Merchant Service merchant/
customers to

• Run reports & queries on their credit card activity

• Manage their fraud prevention settings.

There is also a PTC test version of the Merchant Service Center.

How Do Developers Use the Fraud Prevention Features?
To make use of the fraud prevention features and enable your merchants to make use of
them, you must inform your users about Merchant Service Center and give them access to
this tool from within your application.

If you don’t want to implement AVS & card security code fraud checks in your application,
but want to provide the facility to your customer/merchants, simply point them to the
merchant service center where they can configure fraud prevention settings themselves.

If you do implement AVS & card security fraud checks in your application, you may want
to disable them and let the merchant use the Merchant Service Center tool directly.

A third alternative is to set up your application so that it does its own AVS/CSC
verification. In this case, QBMS won’t decline a transaction if the AVS check fails, since
your application is performing this check. (Of course, even in this scenario, if the merchant
sets their fraud settings via the Merchant Service Center to decline such transactions, their
fraud settings will override your application’s handling of this and the transaction will be
declined.) If you want your application to do its own AVS/CSC checking, you must set up
your application with QBMS in advance to do this. For details, see Registering Applications
at the IDN website.

Fraud Prevention Preference Settings
The following tables list the settings available for the AVS and CVS verification.
How Do Developers Use the Fraud Prevention Features? 21
(c) 2008 Intuit Inc. All rights reserved.

http://ims.quickbooks.com/manager
https://merchantcenter.intuit.com/qbms
https://merchantcenter.ptcfe.intuit.com/qbms

http://developer.intuit.com/qbms/integration_center/?id=1294

Table 2-1 Address Verification Service (AVS) preference settings

IMPORTANT

If a merchant wants to accept all transactions regardless of
AVS check, they should mark all the above as Accept.

Table 2-2 Card Security Code preference settings

Notes on Using AVS Features
You should be aware that QBMS successfully completes a transaction even if an AVS
check fails or is unavailable. It is your responsibility to handle AVS failures in your code.
Such orders should be flagged and merchant should be able to identify them and take
corrective actions such as voiding the transaction.

Notice also that international addresses will result in an AVS check failure in QBMS.

AVS Check Response Options Options Default

If neither Street Address nor Zip Code match Accept/Reject Transaction Reject

If Zip Code matches but Street Address does
not match

Accept/Reject Transaction Accept

If Street Address matches but Zip does not
match

Accept/Reject Transaction Accept

If Street Address and Zip Code are not
available.

Note: if the application does not send the AVS
data in the XML, it is considered under the
same case as AVS authorization system
unavailable.

Accept/Reject Transaction Accept

Card Security Check Response Options
Options
Default

If card security code does not match Accept/Reject Transaction reject

If card security code is not available

Note: If the application does not send the card
security code data in the XML, it is considered the
same case as card security code checking not
supported or processed.

Accept/Reject Transaction Accept
22 Chapter 2: Fraud Prevention Features
(c) 2008 Intuit Inc. All rights reserved.

CHAPTER 3 1

Running Credit Card Transactions 1

This chapter describes the credit card transactions you can send to QBMS. It overviews
some the basic things you’ll need to know about sending transactions in general, and then
briefly mentions each transaction type in detail.

What is the QBMS API?
The QBMS API has no code libraries and no runtime. It consists of an XML spec called
qbmsXML. You write your transaction requests following the qbmsXML spec for each type
of transaction. Listing 3-1 shows what one of these look like for a credit card authorization:

_______Listing 3-1 What qbmsXML looks like: sample authorization request

<?xml version="1.0" ?>
<?qbmsxml version="2.0"?>
<QBMSXML>

<QBMSXMLMsgsRq>
<CustomerCreditCardAuthRq>

<TransRequestID>E09C86CF-9D6E-4EF2-BCBE-4D66B6B0F754<TransRequestID>
<CreditCardNumber>4111111111111111</CreditCardNumber>
<ExpirationMonth>12</ExpirationMonth>
<ExpirationYear>2008</ExpirationYear>
<IsECommerce>true</IsECommerce>
<Amount>203.00</Amount>
<CreditCardAddress>23 Garcia Ave</CreditCardAddress>
<CreditCardPostalCode>94043</CreditCardPostalCode>

</CustomerCreditCardAuthRq>
</QBMSXMLMsgsRq>

</QBMSXML>

Don’t worry about the details at this point. Just notice that this is all there is to the coding
part, at least in the building of the transaction request. You do need to handle certain errors
returned in the response, which is covered in the chapter on error handling.

This is what a typical response to a request looks like:
What is the QBMS API? 23
(c) 2008 Intuit Inc. All rights reserved.

Figure 3-1 Sample transaction response

This sample request and response represent the transaction request/response; to keep things
simple, we’ve omitted the SignonMsgsRq aggregate, which we’ve already mentioned.

We’ll cover this in a lot more detail later on. For right now, you just need to be aware of this
aspect of the request-level work you’ll be doing when you integrate your application with
QuickBooks Merchant Service.

Where Can I Find the Full Syntax Details on the QBMS API?
Included with the SDK is an onscreen reference, which we call the OSR for short. The OSR
is online at http://developer.intuit.com/qbsdk-current/newOSR/index.html . Various XML
specs are documented in the OSR, so make sure you choose qbmsXML.

Each supported credit card transaction is listed in the OSR, along with explanations for
each of the fields, and other information such as whether a field is mandatory, or can be
used if some other field is used (ORs, ANDs, and so forth).

Sending Multiple Transaction Requests in a Single POST
You can batch up a maximum of 20 transaction requests in a single post to QBMS. When
you do this, be careful how you handle the responses. They might not be in the same order
as the requests, so in this case you should use the requestID attribute in the request and
check the requestID attribute in the response to match these up. This same consideration
applies to the QB SDK as well, although QB SDK frequently returns the responses in the
same order. That cannot be expected from the QBMS SDK.

Notes on Running Transactions
The logic you need to follow when running transactions is fairly straightforward. To make a
credit card charge for example, you need to build the qbmsXML request
CustomerCreditCardChargeRq, as described in the OSR, filling in all required customer
information. Then you must post this request to QBMS as described in the chapters on
24 Chapter 3: Running Credit Card Transactions
(c) 2008 Intuit Inc. All rights reserved.

http://developer.intuit.com/qbsdk-current/newOSR/index.html

accessing QBMS from desktop applications and from hosted web applications. See Chapter
8, “Accessing QBMS from Desktop Applications,” and Chapter 9, “Accessing QBMS
From Hosted Web Applications.”

You must check the response for success and optionally save the transaction data,
optionally into QuickBooks via the ReceivePaymentAddRq, SalesReceiptAddRq, or
ARRefundCreditCardAddRq requests in the QB SDK.

To get an authorization for a future transaction, for example when taking a customer order
but prior to fulfilling it, you must build and post the CustomerCreditCardAuthRq request,
check the response for success, and save the response data, particularly the transaction ID,
as you will need the transactionID in order to perform a capture, which charges the credit
card that has previously been authorized for the charge.

.If authorization is denied you’ll need to get a voice authorization. (See “Credit Card Voice
Authorizations.”)

To capture a previously authorized transaction request, you need to build and post a
CustomerCreditCardCapture request, using the transactionID obtained from the previous
CustomerCreditCardAuthRq request.

To void a transaction you need to build and post a CustomerCreditCardTxnVoidRq request,
using the transaction ID of the transaction to be voided. This request is successful only if
the transaction has not yet been settled by the card issuer.

If the transaction has already been settled, you can build and post a
CustomerCreditCardRefundRq request to refund an amount to the customer’s credit card
account.

Card Swipe and Card Present Transactions
Card swipe transactions must use the Track2Data field in the transaction request rather than
the IsCardPresent boolean. Only card swipe transactions get the discount rate, not card
present transactions. Card present is used for transactions where the card is presented to the
merchant but a card swipe transaction couldn’t be performed for some reason.

Notice that in the case of a voice auth transaction where the card was swiped (and therefore
the transaction contains Track2Data) the transaction won’t qualify for the discount rate.

For a sample application supporting card swipe (Track2Data), see the RequestGenerator
sample in the SDK sample subdirectory \samples.

Format of Track2Data

Track2 data is obtained from a card swipe, containing card number, card expiration date,
and other optional data in an expected format, which is shown below.
Important! You must not store Track2 data. Doing so violates the requirements of the card
processors as expressed in the Payment Application Data Security Standard (PA DSS).
Card Swipe and Card Present Transactions 25
(c) 2008 Intuit Inc. All rights reserved.

The Track2 data must be a minimum of 23 characters, 39 max. This is the format:

• The first character must be the start sentinel character ;

• The credit card number follows and is separated by the separator character =

• The card expiration date follows and any other data, with the termination character of ?

Example:

;372449635312118=1202101123456789?

where the first group of characters is the card number, and 1202 is the card expiration date
in the format YYMM, which means our sample 1202 means February 2012.
26 Chapter 3: Running Credit Card Transactions
(c) 2008 Intuit Inc. All rights reserved.

Credit Card Authorizations

CustomerCreditCardAuth is used for a transaction in which the merchant needs
authorization of a charge, but does not wish to actually make the charge at this point in
time. For example, if a customer orders merchandise to be shipped, you could issue this
request at the time of the order to make sure the merchandise will be paid for by the card
issuer. Then at the time of actual merchandise shipment, you perform the actual charge
using the request CustomerCreditCardCaptureRq.

It is very important to save the CreditCardTransID from the response to this request,
because this is required for the subsequent CustomerCreditCardCapture request. Notice that
currently Auth transaction data cannot be stored in QuickBooks.

NOTE

The authorization is valid only for a fixed amount of time,
which may vary by card issuer, but which is usually several
days. QBMS imposes its own maximum of 30 days after the
date of the original authorization, but most issuers are
expected to have a validity period significantly less than this.
Credit Card Authorizations 27
(c) 2008 Intuit Inc. All rights reserved.

Credit Card Capture

This request can be made only after a previous and successful CustomerCreditCardAuth
request, where the card issuer has authorized a charge to be made against the specified
credit card in the future. The CreditCardTransID from that prior transaction must be used in
this subsequent and related transaction. This request actually causes that authorized charge
to be incurred against the customer's credit card.

Notice that you cannot have multiple capture requests against a single
CustomerCreditCardAuth request. Each CustomerCreditCardAuth request must have one
and only one capture request.

The elements in the response are supplied in the CreditCardTxnResultInfo aggregate when
you save the transaction to QuickBooks: most of these are used by QuickBooks internally
for the Reconcile feature and the Get Funding Status feature. See the OSR for field
descriptions.
28 Chapter 3: Running Credit Card Transactions
(c) 2008 Intuit Inc. All rights reserved.

Credit Card Charge

This request, if successful, causes a charge to be incurred by the specified credit card.
Notice that the authorization for the charge is obtained when the card issuer receives this
request. The resulting authorization code is returned in the response to this request.

Notice that voice authorizations cannot be handled by this request. For voice authorizations,
use the CustomerCreditCardVoiceAuth request.

The elements in the response are supplied in the CreditCardTxnResultInfo aggregate when
you save the transaction to QuickBooks: most of these are used by QuickBooks internally
for the Reconcile feature and the Get Funding Status feature. See the OSR for field
descriptions
Credit Card Charge 29
(c) 2008 Intuit Inc. All rights reserved.

Credit Card Refunds
Starting with qbmsXML spec 2.1, there are two ways to get a refund:

• CustomerCreditCardTxnVoidOrRefundRq, which is the preferred way for getting a
refund. QBMS figures out whether to request a void or a refund based on factors such
as the time of the original transaction and the time of the
CustomerCreditCardTxnVoidOrRefund transaction. The void or refund is tied to an
actual sale or capture transaction.

• CustomerCreditCardRefundRq, which you would use to explicitly request a refund that
was not tied to any sale or capture transaction.

NOTE

A refund transaction may involve some processing fees from
the card issuer, depending on the bank or credit card
processor that is used. In comparison to refund transactions
(for those cases where fees are charged for a transaction
void), the fees for a void are normally lower. However, a
refund restores a card’s credit limit faster than a void does
(approximately 24 hours versus a few days).

CustomerCreditCardTxnVoidOrRefund

The CustomerCreditCardVoidOrRefund request uses the CreditCardTransID of the original
transaction to request either a void or a refund of that particular transaction. QBMS figures
out whether to request a void or a refund based on various factors such as the current time
and the time of the original transaction.

You can optionally supply a refund amount. If the request is processed as a refund, the
amount is checked to make sure it doesn’t exceed the amount of the original transaction: the
amount doesn’t have to be equal to the original amount--you can do partial refunds.

NOTE

CustomerCreditCardVoidOrRefund provides an alternative to
the CustomerCreditCardRefund request. It does not replace it:
you can use whichever of these best meets your needs.

You can only use the CustomerCreditCardVoidOrRefund for a previous successful sale
transaction or delayed capture transaction that has not already been voided. (Using this
request on a transaction voided earlier will generate an error.)

You can optionally set the ForceRefund field in the CustomerCreditCardVoidOrRefund to
true to make sure a refund is given rather than a void. Forcing a refund must be done only
when necessary, for example, if there is a need to restore a customer’s credit card limit
quickly. (Notice that you cannot set ForceRefund to false, as this will generate an error.)
30 Chapter 3: Running Credit Card Transactions
(c) 2008 Intuit Inc. All rights reserved.

If the response to a CustomerCreditCardVoidOrRefund request contains the
VoidOrRefundTxnType "Refund", then you can save the transaction in QuickBooks using
the QB SDK request ARRefundCreditCardAdd. To save the transaction you need to supply
the last 4 digits of the credit card number, and expiration month and year of the card used in
the original sales or delayed capture transaction.

If the response to a CustomerCreditCardVoidOrRefund request contains the
VoidOrRefundTxnType "Void", then you do not save any data into QuickBooks.

CustomerCreditCardRefund

You use CustomerCreditCardRefundRq to explicitly request a refund, supplying the credit
card number to be refunded. Notice that there is no reference to any CreditCardTransID in
the CustomerCreditCardRefund request! This means that there will be no checking by the
card processor to determine whether the refund should be issued. It is the responsibility of
the merchant and of the integrated application to keep track of which customers should be
refunded and the amount of the refund.

To refund an amount to a customer’s credit card using CustomerCreditCardRefundRq, you
must

1. Build a CustomerCreditCardRefund request, supplying the credit card information and
the amount to be credited.

2. Post the request to QBMS.

3. Check for success

4. Save the transaction data.

Using the response data obtained from the CustomerCreditCardRefund request, you can
optionally save the refund transaction data into QuickBooks via the request
ARRefundCreditCardAddRq.

Credit Card Voids

The CustomerCreditCardTxnVoid request cancels a credit card charge request that was
successfully made, but which has not yet been settled (that is, funded by the card issuer to
the merchant's bank account). Refund transactions can also be voided.

Normally, transactions are funded within 2 to 3 business days. A transaction that is voided
in this way incurs no transaction fees for authorizations, but fees may still be assessed for
charges. You must supply the valid CreditCardTransID that was returned in a previously
successful CustomerCreditCardCharge, CustomerCreditCardAuth, or
CustomerCreditCardCapture request.

NOTE

Even where fees may apply to a transaction void, the fees for
a void are normally lower than those for refunds.
Credit Card Voids 31
(c) 2008 Intuit Inc. All rights reserved.

This request can also be used to void an authorization or the subsequent capture transaction
of an authorization if used prior to any settlement. This prevents settlement of the
transaction but notice that it does not release the authorization itself (which is a hold on
funds). The hold on funds typically lasts for about a week. If you want to remove the hold
before it expires, you should be aware that the hold on funds cannot be removed via
payment gateways but instead must be done manually by contacting the issuing bank.

Notice that data from this transaction is not saved into QuickBooks.

Credit Card Voice Authorizations
You may need to obtain a voice authorization during a credit card charge operation or
during a credit card authorization operation. For example, an attempted charge or
authorization request may be denied by the card issuer and a voice authorization is then
subsequently attempted.

To charge the customer’s card using a voice authorization, the merchant must call the card
issuer and get the voice authorization code. Your application must then build and post a
CustomerCreditCardVoiceAuthRq request with the AuthorizationCode field filled in with
the voice authorization code obtained from the card issuer.

Using Track2Data in Voice Auth

When Track2Data is used in a voice auth request, QBMS does NOT pass the track2Data to
processing gateways. Instead it uses the track2Data only to parse the credit card number
that is sent to processing gateways. In other words, this is NOT a transaction that qualifies
for the discount rate.
32 Chapter 3: Running Credit Card Transactions
(c) 2008 Intuit Inc. All rights reserved.

Merchant Account Queries

The MerchantAccountQuery is used to query information about the current merchant
account . The query returns with the credit card types (Visa, MasterCard, Discover,
AmericanExpress, JCB, DinersClub) that the merchant account accepts. (That is, there will
be a separate CreditCardType element in the response for each supported card.) If the
merchant account has a set convenience fee value, the ConvenienceFees element will also
be returned in the response.

NOTE

Convenience fee based accounts are accounts that charge
customers a fixed fee per transaction regardless of the size of
the transaction, for the convenience of using a credit card.

If the merchant account cannot be identified or is not subscribed to QBMS, the
status code 10202 and the status message "An error occurred during account
validation” are returned.

Lodging Transactions
Card associations and networks require lodging merchants to send a set of fields along with
authorization and settlement requests. These fields identify these transactions as originating
from lodging merchants and possibly qualifying for special pricing in some cases.

To support the lodging merchants, a new lodging aggregate has been added to all
authorization, refunds, void, sale and capture requests beginning with qbmsXML 3.0. In
addition, a new transaction type called incremental authorization added in qbmsXML 3.0 is
targeted specifically for lodging merchants. This incremental auth request allows the
merchants to add to an existing authorization when a guest extends his/her stay.

For more details, see the Lodging implementation guide at the QBMS Integration Center
website.

Restaurant Transactions
Similar to the Lodging aggregate, the Restaurant aggregate is also added in qbmsXML 3.0
to provide certain fields required by restaurant merchants.

For more details, see the Restaurant implementation guide at the QBMS Integration Center
website.
Merchant Account Queries 33
(c) 2008 Intuit Inc. All rights reserved.

http://developer.intuit.com/qbms/integration_center/lodging/
http://developer.intuit.com/qbms/integration_center/restaurant/

Merchant-Initiated Batch Close Transactions
Made available in QBMS SDK 3.0, the QBMS batch close feature allows merchants to
close one or more open batches during the business day when the merchant wants to close
the batches. The BatchID field is available in the various transaction requests if you specify
the use of qbmsXML spec level 3.0 or greater when you make your transaction requests.

For complete information on using the batch close feature in QBMS, see the Batch Close
Center implementation guide at the QBMS Integration website.
34 Chapter 3: Running Credit Card Transactions
(c) 2008 Intuit Inc. All rights reserved.

http://developer.intuit.com/qbms/integration_center/batchclose/
http://developer.intuit.com/qbms/integration_center/batchclose/

CHAPTER 4 1

SUPPORTING QUICKBOOKS RECONCILE 1

This chapter describes the Reconcile and Get Funding Status feature of QuickBooks and
QBMS.

What is the Reconcile Feature and Why is it Needed?
The QuickBooks with QBMS Reconcile feature is designed to solve the problem of keeping
the merchant’s QuickBooks company data in sync with the merchant’s actual bank account
data. There are two areas where these can get out of sync:

• Credit card funding of transactions occurring in the real bank account are not reflected
in QuickBooks until the merchant performs a Deposit to record the deposit of the
transaction funds in the QuickBooks bank account.

• Credit card transaction fees taken out of the merchant’s real bank account are not
reflected in the QuickBooks company until the merchant updates QuickBooks with
those assessed fees. These fees are charged on a daily as well as monthly basis and
consist of fees such as transaction fees, discount fees, downgrades, monthly fees and
chargebacks.

To help sync up in the first area (Get Funding Status), QuickBooks with QBMS provides
Funding Status information for each batch of deposits inside the QuickBooks Undeposited
Funds account. The Get Funding Status button gets the current status of the selected
transactions from QBMS. If the transactions are funded at the merchant’s bank, the
merchant knows that the transactions need to be moved from QuickBooks’ Undeposited
Funds into the appropriate bank account set up to receive those funds.

To help sync up the QuickBooks company in the second area (transaction fees),
QuickBooks with QBMS enables the merchant to download the fees for VISA, Discover,
and Mastercard that were posted to the bank account. This permits accurate matching of the
fees with the actual bank debits. For American Express, since the funds are deposited net of
fees, QB lets the merchant compute the fees through a fees calculator while depositing the
funded batch of transactions in QuickBooks.

How Do the QBMS and QB SDKs Support the Reconcile Feature?

In the scenarios described above, the credit card transaction synching activities that need to
take place result from credit card transactions that are carried out within QuickBooks with
QBMS. Because the transactions are performed inside QuickBooks, the transaction data is
already in QuickBooks and all that must be done is the synching-up in QuickBooks using
the Reconcile feature.
What is the Reconcile Feature and Why is it Needed? 35
(c) 2008 Intuit Inc. All rights reserved.

But what happens when you have a third party application (integrated with the QBMS
SDK) performing the credit card transactions? How does that transaction data get put into
QuickBooks? That transaction data must be saved by the third party application into
QuickBooks via the QB SDK requests ReceivePaymentAdd, SalesReceiptAdd, or
ARRefundCreditCardAdd. (The response data from the QBMS transaction requests contain
data that must be included in those requests.)

IMPORTANT

The aggregate containing the supplied QBMS transaction data
must mask the credit card number with lower case x and no
dashes. For example, xxxxxxxxxxxx1234.

Notice that once the transaction data is automatically saved into QuickBooks, the merchant
must still manually perform the sync operations (making QB deposits when the real Bank
account is funded, loading any transaction fees into QuickBooks). Those activities are NOT
automated by the QBMS SDK or by the QB SDK.

IMPORTANT

You must be careful when bringing data from QBMS credit
card transactions into a QuickBooks company via the
SalesReceiptAdd, ReceivePaymentAdd, or
ARRefunCreditCardAdd. The QB SDK has no way of knowing
which company file should get that information, so if you are
logged into the wrong company file, the wrong company file
will get that data. One way to implement a check on whether
the company is the expected one is to use a data extension
on the QuickBooks company.

Saving the Transaction Data Into QuickBooks

The ReceivePaymentAdd, SalesReceiptAdd, and ARRefundCreditCardAdd requests accept
credit card data originating from QBMS transactions, if the current QuickBooks company is
set up to use QBMS and has a valid QBMS account.

Make Sure the CustomerRef and PaymentRef Match the Transaction

IF you build a ReceivePaymentAdd, SalesReceiptAdd, or ARRefundCreditCardAdd
request that contains QBMS transaction data, you are responsible for making sure the credit
card transaction is mapped to the proper CustomerRef. Also, you must make sure you
specify the proper credit card type in the PaymentMethod Ref. This information is NOT
included in the credit card aggregate data.

If you don’t specify the credit card type in the PaymentMethodRef, the
ReceivePaymentAdd, SalesReceiptAdd, or ARRefundCreditCardAdd request will fail.
36 Chapter 4: Supporting QuickBooks Reconcile
(c) 2008 Intuit Inc. All rights reserved.

Where to Find the Transaction Data You Need

If you are including QBMS credit card data, both the ReceivePaymentAdd and
SalesReceiptAdd requests require the same parent aggregate CreditCardTxnInfo and the
same child aggregates CreditCardTxnInputInfo and CreditCardTxnResultInfo, as shown in
the OSR. All of the data in these aggregates must be obtained from the qbmsXML credit
card requests for CreditCardTxnInputInfo and responses for CreditCardTxnResultInfo.

However, there are two items in the CreditCardTxnResultInfo that might be slightly tricky.
The ResultCode and the ResultMessage are the StatusCode and StatusMessage returned as
attributes in the qbmsXML responses.

Sample qbXML

The following sample XML shows a SalesReceiptAdd request containing QBMS credit
card data. The transaction is for a customer named John Hamilton. Notice the payment ref
is set to Credit Card: if you don’t have this, the request will fail. Notice that the aggregate
CreditCardTxnResultInfo contains a ResultCode of 0, which means the original qbmsXML
transaction request was successful.

Notice the processing instruction qbxml version=”6.0”. We specify that because the request
is using qbmsXML 2.0 features, which you should do if qbXML 6.0 and qbmsXML 2.0 are
available.

<?xml version="1.0" ?>

<?qbxml version="6.0"?>

<QBXML>

<QBXMLMsgsRq onError="stopOnError">

<SalesReceiptAddRq requestID = "101">

<SalesReceiptAdd>

<CustomerRef>

<FullName>John Hamilton</FullName>

</CustomerRef>

<TxnDate>2005-02-23</TxnDate>

<RefNumber>2345</RefNumber>

<PaymentMethodRef>

<FullName>Visa</FullName>

</PaymentMethodRef>

<Memo>QBMS SDK Test 2345</Memo>

<CreditCardTxnInfo>

<CreditCardTxnInputInfo>

<CreditCardNumber>xxxxxxxxxxxx4444</CreditCardNumber>

<ExpirationMonth>12</ExpirationMonth>

<ExpirationYear>2010</ExpirationYear>

<NameOnCard>John Hamilton</NameOnCard>

<CreditCardAddress>2750 Coast Avenue</CreditCardAddress>

<CreditCardPostalCode>94043</CreditCardPostalCode>

<CommercialCardCode>Doe123</CommercialCardCode>
Saving the Transaction Data Into QuickBooks 37
(c) 2008 Intuit Inc. All rights reserved.

<TransactionMode>CardNotPresent</TransactionMode>

</CreditCardTxnInputInfo>

<CreditCardTxnResultInfo>

<ResultCode>0</ResultCode>

<ResultMessage>STATUS OK</ResultMessage>

<CreditCardTransID>V64A76208243</CreditCardTransID>

<MerchantAccountNumber>4269281420247209</MerchantAccountNumber>

<AuthorizationCode>185PNI</AuthorizationCode>

<AVSStreet>Pass</AVSStreet>

<AVSZip>Fail</AVSZip>

<CardSecurityCodeMatch>Pass</CardSecurityCodeMatch>

<ReconBatchID>420050223 MC 2005-02-23 QBMS 15.0 pre-beta</ReconBatchID>

<PaymentGroupingCode>4</PaymentGroupingCode>

<PaymentStatus>Completed</PaymentStatus>

<TxnAuthorizationTime>2005-02-23T20:57:13</TxnAuthorizationTime>

<TxnAuthorizationStamp>1109192233</TxnAuthorizationStamp>

<ClientTransID>q0002ee5</ClientTransID>
</CreditCardTxnResultInfo>

</CreditCardTxnInfo>

<SalesReceiptLineAdd>

<ItemRef>

<FullName>Fee</FullName>

</ItemRef>

<Rate>100.00</Rate>

</SalesReceiptLineAdd>

</SalesReceiptAdd>

</SalesReceiptAddRq>

</QBXMLMsgsRq>

</QBXML>
38 Chapter 4: Supporting QuickBooks Reconcile
(c) 2008 Intuit Inc. All rights reserved.

CHAPTER 5 1

SIGNING UP FOR A PTC TEST QBMS MERCHANT ACCOUNT 1

There are three types of QBMS account that you must be aware of:

• The PTC test account described in this chapter. This is a test account in our PTC test
environment that is available for no charge with very few restrictions (e.g., no
performance testing is allowed). You should use this account for your development and
testing. The transactions in this environment use test credit card numbers and run
against a QBMS emulator. To apply and setup, follow the instructions in this chapter.

• Alternatively, you can obtain a restricted but real QBMS account that can be used to
run valid credit cards and test end to end capability in production. QBMS waives
monthly, annual and setup fees however, the transaction fees will apply. Use this
account to test your application in production prior to deployment. Please go to the
QBMS Integration Center website for more information and to apply.

• A real production QBMS account that is used to run normal business transactions with
real credit cards. Normal account fees apply. Use this account to run your normal
business transactions. You can also use this account to verify your application in
production prior to deployment. To apply, go to the QuickBooks Merchant Service
website.

NOTE

When you (or your merchants) apply for a real, full
production QBMS account, the account accepts Visa, Discover,
and Mastercard by default. To make the account also accept
American Express, you must explicitly request this on their
online (or phone-based) application. Also, if you have an
existing account with American Express, QBMS Customer
Service can link that accounts with the QBMS account as well.
Finally, in order to get SDK-based transactions accepted by
the QBMS account, you (or your merchants) must check the
"eCommerce or compatible third-party software" box on the
application form.

Signing Up For a PTC Test Account

To set up your QBMS test account if you are not integrating with QuickBooks,

1. Go to the QBMS Developer Program website, and in the Integration Center page click
on Get a Test Account to bring up the Test Account Page.

2. Follow the prompts to obtain your test account. These are self explanatory. However,
you’ll need to know a few things that we’ll cover here:
Signing Up For a PTC Test Account 39
(c) 2008 Intuit Inc. All rights reserved.

http://developer.intuit.com/qbms/integration_center/?id=1304
http://developer.intuit.com/qbms/integration_center
http://www.quickbooksmerchantservice.com/services/merchant_service_web

When prompted to supply a valid email address, make sure you supply a valid address
that has not been used before in any of QB Online or QBMS test or production
environments. (Ignore any fee information for the test environment: there are no fees in
the test environment for test transactions.) That email address will be your login to the
test account when you need to login for connection tickets or session tickets.

Accessing Your Test Account with QuickBooks (Optional)

IMPORTANT

You cannot use one of the sample QuickBooks company files.
You should NOT use your production QuickBooks company file
either because the same company file may not be usable in
both the PTC test and QBMS production environments.
Instead, create and use a new company file for your testing.

If you want to integrate QuickBooks with your QBMS application, to reflect QBMS
transaction data back into your QuickBooks company, you’ll need to set up your company
file to access your QBMS PTC test account.

To set up QuickBooks to use your QBMS test account,

1. Make sure QuickBooks is not running and make sure you are connected to the
Internet.

2. From the Windows Start menu, select Programs->IDN SDK->QBMS SDK->Tools-
>QBMS Use IdnBeta. This will cause QuickBooks to use the PTC test environment for
the credit card processing signup and for all subsequent credit card transactions.

3. Start QuickBooks and create a new test company and assign as its email address the
same email address you used when you obtained your test account. (Company-
>Company Information->E-mail).

4. From the Customers menu, select Receive Payments. The first time you do this in a
new company file you are asked whether your business accepts credit cards. Respond
by selecting “Yes.” This will cause a QBMS modal dialog to be displayed showing a
couple of choices.

5. In the QBMS dialog that is displayed, select the choice, “Activate an existing QBMS
account” and click OK.

6. Click OK when prompted to launch the web browser.

7. The QBMS login page is displayed, prefilled with your company’s email address. This
must be the same address used to create your test QBMS account. Supply your QBMS
test account password, click Log In, and wait a moment or two.

If you have been using the QBMS test account already with one test company, you’ll be
prompted to transfer the test account or create a new test account. Choose whichever
one of these options you want and proceed.

8. At this point, you should get the prompt indicating that your QBMS test account has
been activated for this company file. On the form is a button labeled “Receive
40 Chapter 5: Signing Up for a PTC Test QBMS Merchant Account
(c) 2008 Intuit Inc. All rights reserved.

Payment.” You can either proceed with the RecievePayment transaction or close the
QBMS form, since your QB company file is now activated for QBMS in the PTC test
environment.

Restoring QuickBooks to Point to the Live QBMS Environment
After you are finished developing and thoroughly testing your application, you need to test
it in the production environment, which means you must change QuickBooks to point to the
production QBMS environment, and you must then use your real company file to apply for
a real merchant account from QBMS.

To change to the production environment, from the Windows Start menu, select Programs-
>Intuit SDKs->QBMS SDK X.X->Tools->QBMS Use Production.

As a result of this change, all QBMS signup links will send you to the live QBMS signup
location. All subsequent credit card processing within QuickBooks is performed in the live
environment and must use real credit card numbers and will incur transaction charges.

IMPORTANT

Each applicaton must be registered separately for the PTC
test environment and for the live production environment.
The appID value issued for the PTC environment will not work
in the production environment, and vice versa.
Restoring QuickBooks to Point to the Live QBMS Environment 41
(c) 2008 Intuit Inc. All rights reserved.

42 Chapter 5: Signing Up for a PTC Test QBMS Merchant Account
(c) 2008 Intuit Inc. All rights reserved.

CHAPTER 6 1

TESTING CREDIT CARD TRANSACTIONS 1

This chapter provides information on the kinds of testing you may need to perform on your
application. There are two basic kinds of testing:

• Credit card transaction testing in the QBMS emulation environment

• Testing with QuickBooks

Testing Credit Card Transactions

When your application is using the QBMS test environment (.ptc), all of the transation
requests are sent to the QBMS emulation backend. This emulator “processes” the requests
and returns the appropriate responses. The word “process” is in quotes because there is no
real processing going on. The card number is checked against the valid card numbers listed
below (Table 6-1 on page 43), and the expiration date is checked against the current date.

Table 6-1 Valid Test Credit Card numbers

IMPORTANT

Currently, there is no way to test voice authorization requests
in the QBMS test environment.

However, the AVS values and CVS values are not checked, nor account limits, nor status,
and so forth. To cause the appropriate errors to be returned in response XML, however, you
can supply a configID value within the <NameOnCard> tag that will cause the error you
want returned:

Card Type Test Number Number of Characters

Master Card 5105105105105100 (16)Characters

Master Card 5555555555554444 (16)Characters

VISA 4222222222222 (13)Characters

VISA 4111111111111111 (16)Characters

VISA 4012888888881881 (16)Characters

American Express 378282246310005 (15)Characters

American Express 371449635398431 (15)Characters

Amex Corporate 378734493671000 (15)Characters

Diners Club 38520000023237 (14)Characters

Diners Club 30569309025904 (14)Characters

Discover 6011111111111117 (16)Characters

Discover 6011000990139424 (16)Characters
Testing Credit Card Transactions 43
(c) 2008 Intuit Inc. All rights reserved.

<NameOnCard>configid=value </NameOnCard>

Simply replace “value in the above line with one of the ConfigID values listeds in Table 6-2
on page 44.

Table 6-2 ConfigID values and the errors they generate:

Error to be
Returned ConfigID value to insert Error Emulated

10200 10200_comm An error occurred while communicating with the credit
card processing gateway.

10201 10201_login An error occurred during login to the processing
gateway.

10301 10301_ccinvalid This credit card account number is invalid.

10400 10400_insufffunds This account does not have sufficient funds to process
this transaction.

10401 10401_decline The request to process this transaction has been
declined.

10403 10403_acctinvalid The merchant account information submitted is not
recognized.

10404 10404_referral This transaction has been declined, but can be
approved by obtaining a Voice Authorization code from
the card issuer.

10405 10405_void An error occurred while attempting to void this
transaction.

10406 10406_capture An error occurred while processing the capture
transaction.

10500 10500_general A general error occurred at the credit card processing
gateway.

10000 10000_avscvdfail Status OK, AVS Street and Zip fail, card security code
fail

10000 Is default: supply no configID
value.

Status OK, AVS Street and Zip pass, card security code
pass (AVS and CSC fields supplied in the request)

10000 Is default: supply no configID
value

Status OK, AVS Street and Zip unavailable, card
security code unavailable (used only required fields in
the xml request)
44 Chapter 6: Testing Credit Card Transactions
(c) 2008 Intuit Inc. All rights reserved.

For example, in the following request, a credit card charge transaction is requested, with the
NameOnCard tag set to generate an insufficient funds error:

<QBMSXML>

<QBMSXMLMsgsRq>

<CustomerCreditCardChargeRq>

<TransRequestID>02B123451</TransRequestID>

<CreditCardNumber>5555555555554444</CreditCardNumber>

<ExpirationMonth>12</ExpirationMonth>

<ExpirationYear>2008</ExpirationYear>

<Amount>130.00</Amount>

<NameOnCard>configid=10400_insufffunds</NameOnCard>

</CustomerCreditCardChargeRq>

</QBMSXMLMsgsRq>

</QBMSXML>

Testing Track2 Data
Certain QBMS transactions support the use of Track2 data. The PTC test environment
supports testing of this feature. There is a sample called RequestGenerator included with
the SDK, in the \samples subdirectory, that you can use to do this.

If you don’t want to use that sample, you can also supply the following value for the
<Track2Data> element in your requests:

;372449635312118=1202101123456789?

Testing CustomerCreditCardTxnVoid
The PTC emulator considers all transactions settled. Void transactions cannot succeed on
settled transactions: the error 10405 would be returned in this case. So You can use the PTC
test environment to test this for the failure case. That is, you can issue this request and you
should get error 10405 back in the response.

Testing With QuickBooks

In the test environment, certain QuickBooks/QBMS features can be tested, for example,
Funding Status. However, the Reconciliation feature requires real data from financial
institutions, and so cannot be tested.

What is it that you need to test? If you write QBMS credit card transaction data into
QuickBooks using the QB SDK requests ARRefundCreditCardAdd, ReceivePaymentAdd,
or SalesReceiptAdd, you can visually check the results by examining the Make Deposits
form, which is accessed from the QuickBooks main form by selecting Banking->Make
Deposits.
Testing Track2 Data 45
(c) 2008 Intuit Inc. All rights reserved.

This should bring up the Payments to Deposit form which lists the payments and also
refunds. You can examine this form to determine whether your data is showing up correctly
in QuickBooks. You can also select a payment and click the Get Funding Status button,
which will, in the test environment, get the funding status from the emulator.

Testing and Diagnosing Web Apps

During development, if you are running into problems getting your web app to work with
QBMS servers you would POST to the test environment diagnostic tool at this URL:

https://webmerchantaccount.ptc.quickbooks.com/j/diag/http

When you deploy your application, you need to provide your users with access to this
debugging capability so it can be available at runtime in your application. This can help you
with problems stemming from certificate expiration and the revocation process. You should
post to the production environment diagnostics site below,so your users can supply you with
needed information.

https://webmerchantaccount.quickbooks.com/j/diag/http

To interpret and use what you see at the diagnostic site, please refer to this AlphaGeek
article:

Troubleshooting Certificates for QuickBooks Merchant Service

IMPORTANT

Due to certificate expiration and the revocation process the
above debugging capability needs to be available at runtime.
46 Chapter 6: Testing Credit Card Transactions
(c) 2008 Intuit Inc. All rights reserved.

http://developer.intuit.com/Technical_Resources/AlphaGeek/?id=415

CHAPTER 7 1

ERROR HANDLING 1

This chapter covers error handling for both desktop and hosted web applications.

Types of Errors Your Application Must Handle

Your application must handle three types of errors:

• Standard HTTPS errors resulting from your application’s attempt to use network
resources.

• QBMS connection-related errors (returned in the StatusCode field of SignonDesktopRs
or SignonTicketRs) resulting from your application’s attempt to communicate with it.

• QBMS or credit card processor errors resulting from attempted transactions that fail or
are denied. (These are returned in the StatusCode field of the actual qbmsXML
transaction request.)

For lists and descriptions of the standard HTTP/S errors, please consult any of the many
references on the subject. If you are new to this area, you may want to visit the web site
www.w3.org, which is the web site for the World Wide Web consortium.

NOTE

Certain standard errors will be returned by QBMS under some
circumstances. For example, malformed XML data will be
rejected with a standard HTTP error 400, Bad Request.

QBMS Connection-Related Errors
The following is a list of QBMS connection-related errors that can be returned in the
StatusCode field of SignonDesktopRs, SignonTicketRs, or SignonAppCertRs.

2000
Authentication failed -- Invalid login name or password / certificate / ticket

2010
Unauthorized

2020
Session Authentication required

2030
Unsupported signon version

2040
Internal error
Types of Errors Your Application Must Handle 47
(c) 2008 Intuit Inc. All rights reserved.

The sample code provided with the QBMS SDK shows how to handle many of these
connection-related errors.

QBMS and Card Processor Errors
For a list of QBMS and card processor errors that could be returned in the StatusCode field
of the various qbmsXML transaction requests, see Appendix A, “Status Codes Returned in
Responses.”

QBMS Error Recovery

Beginning with qbmsXML 2.0, a new required field is included with all QBMS transaction
requests: TransRequestID. (We recommend using UUID/GUID-based values.) This
mandatory element should not be confused with the RequestID attribute, which is optional
and is not used in QBMS error recovery.

TransRequestID is an application-supplied value that identifies the transaction to QBMS.
The purpose of this is to prevent duplicate transactions, as might occur in a network outage
where the transaction is actually successful, but a network problem occurred before the
sender could be notified of success.

The sender can safely resend the transaction and QBMS will recognize the resend as a
duplicate transaction because of the TransRequestID. QBMS will return the proper
response data, but no additional processing charge will be assessed.

The TransRequestID need only be unique for the merchant sending the request for a period
of 15 minutes. After this time has elapsed, the TransRequestID can be reused. Even if other
merchants are using the same application, the ID need only be unique to the one merchant,
it need not be unique across all the merchants.

.

48 Chapter 7: Error Handling
(c) 2008 Intuit Inc. All rights reserved.

CHAPTER 8 1

ACCESSING QBMS FROM DESKTOP APPLICATIONS 1

This chapter describes how to access QBMS for credit card transactions from a desktop
application. It covers connection/session ticket management, building the message signon
blocks, handle POSTing to the QBMS data center, and so forth.

Before You Start

You must sign up with QBMS to obtain a PTC test account before you can do any of the
things we describe in this chapter in the PTC environment. You must obtain a real QBMS
account if you want to any of the things we describe in this chapter in the production
QBMS environment.

Finally, your customer/merchant needs to sign up and obtain a real QBMS account before
they can run your production application!

Signing up for a PTC account or a real QBMS account is covered in Chapter 5, “Signing
Up for a PTC Test QBMS Merchant Account.”

Registration with Intuit Gateways is Required for Access
All applications are required to register with IDN before they can access QBMS. If you
don’t register, the Intuit gateways won’t let your application into the QBMS data centers.

To register, visit appreg.intuit.com. (Additional registration instructions are located at the
IDN developer website.)

Keep in mind there are two separate environments that you need to register for:

• Register your application with IDN to use the PTC test environment, to test your
application.

• Register your application with IDN to use the QBMS production environment when
you’re ready to test live or go live.

IMPORTANT

After registering for PTC, you will be given an AppID that you
use to communicate with PTC. After registering for
production, you will be given a different AppID that you use
to communicate with production QBMS. The AppID for the
PTC test environment will not work with QBMS production and
vice versa!
Before You Start 49
(c) 2008 Intuit Inc. All rights reserved.

http://developer.intuit.com/qbms/integration_center/?id=1294
www.appreg.intuit.com

Security Rules For Your Application

This section describes security rules that must be observed in your application code. If your
application doesn’t follow these rules it may lose access to QBMS.

The following security rules must be observed by your application:

• Your application may not automate any part of the QBMS user interface, including the
application authorization process.

• If you integrate with QuickBooks, your application may not request and/or store the
user’s QuickBooks logon and password.

• You cannot share connection tickets or session tickets between different applications.

• If your application is a browser application, you must not allow your pages to be
cached.

• Your application must encrypt the connection ticket before storing it and it must keep
the session ticket in memory only.

Accessing QBMS: What You Need to Do
To access QBMS for credit card transactions, you need to do these three things:

• Support QBMS user authorization. This means you need to send your user to the
QBMS login sites to get connection tickets and possibly session tickets.

• Using HTTPS, POST the SDK requests to the QBMS merchant account at the QBMS
data center.

• Handle the possible HTTPS-related errors and ticket-related errors. (For more details
on this, see Chapter 7, “Error Handling.”)

The following sections provide more details.

Posting qbmsXML to QBMS (No Session Authentication)

“I just want to post a credit card charge to QBMS: how do I do that?” Well, let’s take the
simple case where you’re using a connection ticket that doesn’t require session
authentication.

Figure 8-1 shows an overview of what happens in this scenario, including getting the
connection ticket and session ticket.
50 Chapter 8: Accessing QBMS from Desktop Applications
(c) 2008 Intuit Inc. All rights reserved.

Figure 8-1 POSTing to QBMS, connection ticket only

In Figure 8-1, you only get the connection ticket once and then store it securely for
subsequent use, conceivably forever, or until the merchant account owner revokes it. You
also need to get the session ticket as shown in the figure only once for every transaction
session.

The other things that are happening in this communication will be a bit more clear when we
start looking at some samples, which we’ll do now.
Posting qbmsXML to QBMS (No Session Authentication) 51
(c) 2008 Intuit Inc. All rights reserved.

What Your qbmsXML Containing SignonDesktopRq Looks Like

Once you get the connection ticket from the user pasting it into your application (we’ll get
to connection tickets soon, but for now, hold on), you need to send a qbmsXML string
containing only the SignonDesktopRq within the SignonMsgsRq aggregate, as shown
below:

______ Listing 8-1 Sending SignonDesktopRq to Get the Session Ticket

<?xml version="1.0" ?>

<?qbmsxml version="2.0"?>

<QBMSXML>

<SignonMsgsRq>

<SignonDesktopRq>

<ClientDateTime>2006-09-20T15:49:26</ClientDateTime>

<ApplicationLogin>TxnTester.intuit.com</ApplicationLogin>

<ConnectionTicket>TGT-77-102983765412908762935Q</ConnectionTicket>

</SignonDesktopRq>

</SignonMsgsRq>

</QBMSXML>

Notice we don’t supply the optional information here, not even the AppID, because they
aren’t required once you have the connection ticket. (Starting with qbmsXML 2.0, the
AppID, Language and AppVer are optional.)

Figure 8-2 is what the response looks like, if you’re successful:

Figure 8-2 SignonDesktop response containing session ticket

We’ve circled the part we need from the response. You must take that session ticket and
build a SignonTicketRq that you’ll include with every transaction POSTed to the QBMS
data center during the current session.(If you start a new session, you’ll need to send the
SignonDesktopRq again as shown in Listing 8-1, to get a new session ticket to put in your
SignonTicketRq.)
52 Chapter 8: Accessing QBMS from Desktop Applications
(c) 2008 Intuit Inc. All rights reserved.

What Your Transaction Requests Look Like

Listing 8-2 below is what you would send to QBMS data center for transaction processing.
Notice the SignonMsgsRq aggregate containing SignonTicketRq and the session ticket.

_______Listing 8-2 Fully formed Request String Ready to Post to QBMS

<?xml version="1.0" ?>

<?qbmsxml version="2.0"?>

<QBMSXML>

<SignonMsgsRq>

<SignonTicketRq>

<ClientDateTime>2006-09-29T08:46:58</ClientDateTime>

<SessionTicket>V1-32-102983765412908762935g:85095501</SessionTicket>

</SignonTicketRq>

</SignonMsgsRq>

<QBMSXMLMsgsRq>

<CustomerCreditCardAuthRq requestID="23909">

<TransRequestID>E09C86CF</TransRequestID>

<CreditCardNumber>4111111111111111</CreditCardNumber>

<ExpirationMonth>12</ExpirationMonth>

<ExpirationYear>2008</ExpirationYear>

<IsECommerce>true</IsECommerce>

<Amount>203.00</Amount>

<CreditCardAddress>23 Garcia Ave</CreditCardAddress>

<CreditCardPostalCode>94043</CreditCardPostalCode>

</CustomerCreditCardAuthRq>

</QBMSXMLMsgsRq>

</QBMSXML>

The various fields in the SignonDesktopRq and SignonTicketRq are explained in the
appendixes. However, the only ones you would normally use are the Client date time and
the ticket fields.

How Do You POST the qbmsXML to Production QBMS?

IMPORTANT

The URLs shown here are case sensitive. Be sure to use the
case as shown in the examples.

Lets say we have the contents of Listing 8-2 in a string we called XmlString, just picking a
name out of the hat. This is how you would post that request string, in VB using a
Microsoft XML XMLTTPP40 object:
Posting qbmsXML to QBMS (No Session Authentication) 53
(c) 2008 Intuit Inc. All rights reserved.

______ Listing 8-3 Posting Requests to QBMS

Dim RequestURL As String

‘This is the URL you use to send requests to QBO

RequestURL = "https://merchantaccount.quickbooks.com/j/AppGateway"

Dim objXMLHttp As XMLHTTP40

Set objXMLHttp = New XMLHTTP40

objXMLHttp.open "POST", RequestURL, False

objXMLHttp.setRequestHeader "content-type", "application/x-qbmsxml"

‘XmlString is the string shown above in Listing 8-2

objXMLHttp.send XmlString

‘for grins, show the response in a message box

Dim resp As String

resp = objXMLHttp.responseText

MsgBox resp

That’s all there is to it. Your own language of choice will vary the code particulars, but
you’ll always need to POST qbmsXML (formed like our sample!) to the the URL shown in
the above sample.

Wait! How Do I POST to the PTC Test Environment?

IMPORTANT

The URLs shown here are case sensitive. Be sure to use the
case as shown in the examples.

You use the same code as that shown for Listing 8-3, only replace the RequestURL line
with this one:

RequestURL = "https://merchantaccount.ptc.quickbooks.com/j/AppGateway"

All we did was insert .ptc between merchantaccount and quickbooks.com. This will send
your request to the emulator so you can get a test response.

Sending the User to Get a Connection Ticket
We’ve put off discussing this so you would have some context first of the overall process of
getting tickets and sending transaction requests. Now we need to show how to get a
connection ticket.

If you don’t already have the connection ticket, you must send your user to the QBMS login
site, where the user logs on to his or her QBMS account and follows the connection
prompts to create a connection ticket for your application. The user then copies that ticket
into your application via the Windows clipboard.
54 Chapter 8: Accessing QBMS from Desktop Applications
(c) 2008 Intuit Inc. All rights reserved.

Here’s how to send the user to the login site to get a connection ticket in VB:

_______Listing 8-4 Sending User to Production QBMS Login site for Connection Ticket

Dim loginURL As String

loginURL = "https://merchantaccount.quickbooks.com/j/sdkconnection/connectionList?

appid=56988448"

Dim IE1 As New InternetExplorer

IE1.Visible = True

IE1.Navigate (loginURL)

The only thing you change in the above code so it works with your application is the appid
value 56988448. That must be replaced by your own application ID obtained when you
registered your application with IDN.

As a result of this code, the user will be sent to the QBMS login site to login to the user’s
QBMS merchant account. Then, if the user chooses to grant your application the connection
ticket, the user will go through the connection interview at that site and copy the resulting
connection ticket into your application, into the UI component you will have thoughtfully
provided.

You’ll encrypt the connection ticket and store it persistently, because that ticket is good til
the user cancels it. (For sample encryption code, see “Using wincrypt to Store Connection
Tickets.”)

Getting a Connection Ticket from the PTC Enviroment

To get a PTC connection ticket, use the code shown in Listing 8-4, but change the
loginURL line to:

loginURL = “https://merchantaccount.ptc.quickbooks.com/j/sdkconnection/connectionList?

appid=56988448”

again, changing the appid value to whatever your own AppID is.

Detecting/Handling Invalid Connection Tickets

In Listing 8-4 we showed you how to send the user to get a connection ticket. You could
put this code in a “subscribe” button click event handler if you want. But whether you use it
that way or not, you must always also put that code in a check for an invalid connection
ticket. Why?

The connection ticket may be removed at any time by the user, or be rendered invalid by
QBMS itself for security reasons. You cannot assume that once you have the ticket, it will
always work. If the connection ticket is invalid (or even missing!), the response to your
qbmsXML request will contain a status code of 2000 in the StatusCode attribute within the
SignonDesktopRs. So you need to check for this condition and if it occurs, send the user
back to the QBMS login site to get a valid one.
Sending the User to Get a Connection Ticket 55
(c) 2008 Intuit Inc. All rights reserved.

The following code shows you how to check for an invalid or missing connection ticket and
then respond by sending the user to the QBMS login site for a connection ticket. We use a
DOM document to make life easier in getting to the SignonDesktopRs field we want.

______ Listing 8-5 Checking for Invalid or Missing Connection Ticket

‘ This is the response to the POST where we send the SignonDesktopRq request to QBMS

resp = objXMLHttp.responseText

Dim doc As DOMDocument40

Set doc = New DOMDocument40

doc.async = False

doc.validateOnParse = False

‘ Load the response into DOM and traverse to the StatusCode field in SignonDesktopRs

‘ which is within SignonMsgsRs

doc.loadXML (resp)

Dim top As IXMLDOMNode

Set top = doc.documentElement

Dim responses As IXMLDOMNodeList

' All we care about is the SignonMsgsRs part

Set responses = top.selectNodes("SignonMsgsRs")

Dim rs As IXMLDOMElement

Set rs = responses.Item(0)

Dim dtResponses As IXMLDOMNodeList

' Then we need the response to the SignonDesktopRq

Set dtResponses = rs.selectNodes("SignonDesktopRs")

Dim dtRs As IXMLDOMElement

Set dtRs = dtResponses.Item(0)

Dim dtStatusCode As String

' Look at the status code

dtStatusCode = dtRs.getAttribute("statusCode")

dtStatusMsg = dtRs.getAttribute("statusMessage")

If "2000" = dtStatusCode Then

MsgBox ("Connection ticket required: please get ticket and paste it into our app")

Dim loginURL As String

loginURL = "https://merchantaccount.quickbooks.com/j/sdkconnection/

connectionList?appid=56988448"

Dim IE1 As New InternetExplorer

IE1.Visible = True

IE1.Navigate (loginURL)

End If

To make the above code work for PTC, replace the loginURL line in Listing 8-5 with this:
56 Chapter 8: Accessing QBMS from Desktop Applications
(c) 2008 Intuit Inc. All rights reserved.

loginURL ="https://merchantaccount.ptc.quickbooks.com/j/sdkconnection/connectionList?

appid=56988448"

Again, replace the appid value in the loginURL with your own AppID.

Posting qbmsXML to QBMS with Session Authentication
In Listing 8-2 through Listing 8-4 we showed you the simple case, posting qbmsXML to
the QBMS data center where the connection ticket used does not require session
authentication. But in “real life,” users will create some connection tickets with session
authentication and some without it. Because there is no way your application can figure out
in advance which kind of connection ticket it is dealing with, your application needs to
handle both possibilities.

So how do you handle this situation? Figure 8-3 shows an overview of what needs to
happen:
Posting qbmsXML to QBMS with Session Authentication 57
(c) 2008 Intuit Inc. All rights reserved.

Figure 8-3 Handling connection tickets requiring session authentication

Here’s what Figure 8-3 is showing you:

1. POST the qbmsXML to the data centers just like we showed you in Listing 8-2 through
Listing 8-4.

2. Check the response to that POST: if the connection ticket requires session
authentication, you’ll get an error 2020 returned in the StatusCode field of
SignonDesktopRs.
58 Chapter 8: Accessing QBMS from Desktop Applications
(c) 2008 Intuit Inc. All rights reserved.

3. Respond to the StatusCode 2020 by sending the user to the QBO login site, where the
user logs into his or her QBMS account and obtains a session ticket to paste into your
application’s UI.

4. Now for the tricky part. The user-pasted session ticket is an intermediate ticket: you
can’t use it to access the QBMS merchant account just yet. The QBMS login site needs
to combine it with the connection ticket for security reasons. You need to supply the
connection ticket and the intermediate (user-pasted) session ticket in a URL that points
to the QBMS login site again so the QBMS site can do what it needs to do without user
intervention. (We’ll show you how to build this URL in Listing 8-6.)

5. Invoke an HTTPS GET using that URL. The login site will construct your application
session ticket from the connection ticket and the user-pasted session ticket. The actual
application-ready session ticket is returned in the response to that GET. (Be careful: the
first three characters in the response are for status: the ticket starts at the fourth
character!)

6. In the qbmsXML transaction request you want to POST, insert a SignonTicketRq
aggregate containing the application-ready session ticket from the GET, which you
have obtained in such a laborious fashion.

7. POST the qbmsXML to the QBMS data centers.

Have you got all that? Here’s some code to make things a bit more clear.

Sending User to Get Intermediate Session Ticket

In our sample, we are POSTing the qbmsXML shown in Listing 8-2. Our POST uses
SignonDesktopRq containing a connection ticket. Because this connection ticket requires
session authentication, the qbmsXML request is not successful, but instead error 2020 is
returned in the status code for SignonDesktopRs.

Here’s that activity and our handling of it, which is to message the user and send the user to
the login site to log in and get a session ticket.

_______Listing 8-6 Handling Error 2020: Requires Session Authentication

‘ Post qbmsXML to QBMS

Dim RequestURL As String

RequestURL = "https://merchantaccount.quickbooks.com/j/AppGateway"

‘ XmlString is the qbXML shown in Listing 8-2

Dim MyHttpObject As XMLHTTP40

Set MyHttpObject = New XMLHTTP40

MyHttpObject.open "POST", RequestURL, False

MyHttpObject.setRequestHeader "content-type", "application/x-qbmsxml"

MyHttpObject.send XmlString
Posting qbmsXML to QBMS with Session Authentication 59
(c) 2008 Intuit Inc. All rights reserved.

‘ Get the response to the POST and load it into DOM doc

Dim resp As String

resp = MyHttpObject.responseText

Dim doc As DOMDocument40

Set doc = New DOMDocument40

doc.async = False

doc.validateOnParse = False

doc.loadXML (resp)

‘ Traverse DOM doc to the node containing SignonDesktopRs

‘ and get the StatusCode from it

Dim top As IXMLDOMNode

Set top = doc.documentElement

Dim responses As IXMLDOMNodeList

'All we care about is the SignonMsgsRs part

Set responses = top.selectNodes("SignonMsgsRs")

Dim ResponseItem As IXMLDOMElement

Set ResponseItem = responses.Item(0)

Dim dtResponses As IXMLDOMNodeList

Set dtResponses = ResponseItem.selectNodes("SignonDesktopRs")

Dim dtRs As IXMLDOMElement

Set dtRs = dtResponses.Item(0)

Dim dtStatusCode As String

dtStatusCode = dtRs.getAttribute("statusCode")

‘ If status code is 0, the qbmsXML request got through and we have a good session ticket,

‘ which means our connection ticket didn’t require session authentication

‘ If status code is 2020, it didn’t get through: need to do session authentication

‘ so send user to QBMS login site to get one

If "2020" = dtStatusCode Then

MsgBox ("Login to QBMS and get the session ticket from QBMS")

Dim SessAuthURL As String

SessAuthURL = "https://login.quickbooks.com/j/qbn/sdkapp/sessionauth2?serviceid=

1002&appid=56988448&service_flags=qbmssdk%3dtrue"

Dim IE1 As New InternetExplorer

IE1.Visible = True

IE1.Navigate (SessAuthURL)

End If

Again, if you’re working in the PTC environment, replace the sessAuthURL line with:

SessAuthURL = "https://login.ptc.quickbooks.com/j/qbn/sdkapp/sessionauth2?serviceid=

1002&appid=56988448&service_flags=qbmssdk%3dtrue"

And in both cases, make sure you replace the appid value shown in these samples with your
own AppID given you by IDN as a result of registering your app.
60 Chapter 8: Accessing QBMS from Desktop Applications
(c) 2008 Intuit Inc. All rights reserved.

The end result of this code is the intermediate session ticket that you need to supply in a
GET to the QBMS login site as we’ll show you right now.

Transforming the Intermediate (User-Pasted) Session Ticket

If the user choses to grant the session ticket to your application, the result from the code in
Listing 8-6 is a session ticket pasted into your application UI by your user. You need to
submit this session ticket in a URL that you send to QBMS(via an HTTPS GET) for further
transformation for security purposes.

This is shown in Listing 8-7:

_______Listing 8-7 Transforming the User-Pasted Session Ticket

‘ Read the user-pasted session ticket from our UI texbox control

Dim SessTicketFromUser As String

SessTicketFromUser = SessionTicket.Text

‘ Put connection ticket and user-pasted session ticket in the URL to be used

‘ in the GET invocation: GET invoked on the QBMS login site. Notice there is

‘ no user interaction in this.

Dim authURL As String

authURL = "https://login.quickbooks.com/j/qbn/sdkapp/

connauth?serviceid=1002&appid=56988448&conntkt=TGT-135-1029837654129087629353zg" +

"&sessiontkt=" + SessTicketFromUser

‘ Do the GET and get the response. The first three response chars are the status code:

‘ check this for success (000 is success) and get the ticket starting at the 4th char

Dim http As New XMLHTTP40

http.open "GET", authURL, False

http.send authURL

Dim resp As String

Dim status As String

resp = http.responseText

status = Mid(resp, 1, 3)

If (Not status = "000") Then

MsgBox "Problem updating session ticket"

Exit Sub

End If

‘ We now have the application-ready session ticket: this goes into

‘ the SignonTicketRq aggregate that we’ll substitute for the SignonDesktopRq

‘ before we POST our qbmsXML

resp = Mid(resp, 4)
Posting qbmsXML to QBMS with Session Authentication 61
(c) 2008 Intuit Inc. All rights reserved.

Substitute your own AppID value for the one we show in the authURL line. Also, to make
this work with PTC, replace that authURL line with this one:

authURL = "https://login.ptc.quickbooks.com/j/qbn/sdkapp/connauth?serviceid=1002&appid=

56988448&conntkt=TGT-135-1029837654129087629353zg" + "&sessiontkt=" + SessTicketFromUser

Using the Transformed Session Ticket in Your qbmsXML

Once QBMS returns the transformed session ticket from your GET, as shown in Listing 8-
7, you must supply it in the SessionTicket element within a SignonTicketRq aggregate. The
resulting POST-ready qbmsXML string will look exactly like that shown in Listing 8-8.

______ Listing 8-8 Sample qbmsXML for transaction sent under session authentication

<?xml version="1.0" ?>

<?qbmsxml version="2.0"?>

<QBMSXML>

<SignonMsgsRq>

<SignonTicketRq>

<ClientDateTime>2006-09-29T08:46:58</ClientDateTime>

<SessionTicket>V1-32-102983765412908762935g:85095501</SessionTicket>

</SignonTicketRq>

</SignonMsgsRq>

<QBMSXMLMsgsRq>

<CustomerCreditCardAuthRq requestID="23909">

<TransRequestID>E09C86CF</TransRequestID>

<CreditCardNumber>4111111111111111</CreditCardNumber>

<ExpirationMonth>12</ExpirationMonth>

<ExpirationYear>2008</ExpirationYear>

<IsECommerce>true</IsECommerce>

<Amount>203.00</Amount>

<CreditCardAddress>23 Garcia Ave</CreditCardAddress>

<CreditCardPostalCode>94043</CreditCardPostalCode>

</CustomerCreditCardAuthRq>

</QBMSXMLMsgsRq>

</QBMSXML>

URLs Used to Access QBMS from Desktop Applications

IMPORTANT

The URLs shown here are case sensitive. Be sure to use the
proper case as shown.

The URLs used to access QBMS are listed in the following table.
62 Chapter 8: Accessing QBMS from Desktop Applications
(c) 2008 Intuit Inc. All rights reserved.

Table 8-1 PTC Test Environment and Production URLs

The SignonDesktop and SignonTicket Request Definitions
The aggregate definitions for SignonDesktopRq and SignonTicketRq, along with their
responses are provided in the SDK subdirectory \doc, in the files qbmsxmlso20.xml.

For your convenience, we’ve listed and explained some of these in Appendix B, “Signon
Requests and Responses XML.”

Using wincrypt to Store Connection Tickets

The following C++ example shows how to encrypt and decrypt the connection ticket using
the functionality provided in the Windows encryption functionality.

#include <stdio.h>

#include <windows.h>

#include <wincrypt.h>

#define ENCODING_TYPE (PKCS_7_ASN_ENCODING | X509_ASN_ENCODING)

void HandleError(char *s);

unsigned char *GetRandomBytes(unsigned long *length)

{

Function of
the URL PTC URLs Production URLs

Send user to
get
connection
ticket

https://
merchantaccount.ptc.quickbooks.com/j/
sdkconnection/connectionList?appid=
myAppID

https://merchantaccount.quickbooks.com/j/
sdkconnection/connectionList?appid=
myAppID

Send user to
get
intermediate
Session
ticket

https://login.ptc.quickbooks.com/j/qbn/
sdkapp/sessionauth2?serviceid=
1002&appid=MyAppID&service_flags=qbmss
dk%3dtrue

https://login.quickbooks.com/j/qbn/sdkapp/
sessionauth2?serviceid=
1002&appid=MyAppID&service_flags=qbmss
dk%3dtrue

URL for
HTTPS “GET”
to transform
intermediate
session ticket

https://login.ptc.quickbooks.com/j/qbn/
sdkapp/connauth?serviceid=1002&appid=
MyAppID&conntkt=MyConnTicket&sessiontkt
=SessTicketFromUser

where MyAppID is your AppId value,
MyConnTicket is your connection ticket, and
SessTicketFromUser is the user-pasted
session ticket.

https://login.ptc.quickbooks.com/j/qbn/
sdkapp/connauth?serviceid=1002&appid=
MyAppID&conntkt=MyConnTicket&sessiontkt
=SessTicketFromUser

where MyAppID is your AppId value,
MyConnTicket is your connection ticket, and
SessTicketFromUser is the user-pasted
session ticket.

Where to
POST
transaction
requests

https://
merchantaccount.ptc.quickbooks.com/j/
AppGateway

https://merchantaccount.quickbooks.com/j/
AppGateway
The SignonDesktop and SignonTicket Request Definitions 63
(c) 2008 Intuit Inc. All rights reserved.

HCRYPTPROV hCryptProv;

BYTE pbData[1024]; // Size chosen arbitrarily.

BYTE *output;

//--

// Acquire a CSP context.

if(CryptAcquireContext(

&hCryptProv,

NULL,

NULL,

PROV_RSA_FULL,

0))

{

printf("CryptAcquireContext succeeded. \n");

}

else

{

HandleError("Error during CryptAcquireContext!\n");

}

if(CryptGenRandom(

hCryptProv,

*length,

pbData))

{

printf("Random sequence generated. \n");

output = new unsigned char [*length];

memcpy(output, pbData, *length);

}

else

{

HandleError("Error during CryptGenRandom.");

output = NULL;

}

return output;

}

void main()

{

// Encrypt data from DATA_BLOB DataIn to DATA_BLOB DataOut.

// Then decrypt to DATA_BLOB DataVerify.

//--

// Declare and initialize variables.
64 Chapter 8: Accessing QBMS from Desktop Applications
(c) 2008 Intuit Inc. All rights reserved.

DATA_BLOB DataIn;

DATA_BLOB DataOut;

DATA_BLOB DataVerify;

BYTE *pbDataInput =(BYTE *)"Hello world of data protection.";

DWORD cbDataInput = strlen((char *)pbDataInput)+1;

DataIn.pbData = pbDataInput;

DataIn.cbData = cbDataInput;

CRYPTPROTECT_PROMPTSTRUCT PromptStruct;

LPWSTR pDescrOut = (LPWSTR)0xbaadf00d ; // NULL;

//--

// Begin processing.

printf("The data to be encrypted is: %s\n",pbDataInput);

//--

// Initialize PromptStruct.

ZeroMemory(&PromptStruct, sizeof(PromptStruct));

PromptStruct.cbSize = sizeof(PromptStruct);

PromptStruct.dwPromptFlags = (CRYPTPROTECT_PROMPT_ON_PROTECT |

CRYPTPROTECT_PROMPT_ON_UNPROTECT);

PromptStruct.szPrompt = L"Hey- Look Here: This is a user prompt.";

//--

// Generate some random bytes to ensure better security.

unsigned char *randomBytes = NULL;

unsigned long randomLength = 16; // use 16 bytes of randomness.

randomBytes = GetRandomBytes(&randomLength);

DATA_BLOB random;

random.cbData = randomLength;

random.pbData = randomBytes;

if (randomBytes == NULL)

HandleError("Error generating random bytes.");

//--

// Begin protect phase.

if(CryptProtectData(

&DataIn,

L"We're protecting test data. ", // A description sting.

&random, // Optional entropy.

NULL, // Reserved.
Using wincrypt to Store Connection Tickets 65
(c) 2008 Intuit Inc. All rights reserved.

&PromptStruct, // Pass a PromptStruct.

0,

&DataOut))

{

printf("The encryption phase worked. \n");

}

else

{

HandleError("Encryption error!");

}

//---

// Begin unprotect phase.

if (CryptUnprotectData(

&DataOut,

&pDescrOut,

&random, // Optional entropy

NULL, // Reserved

&PromptStruct, // Optional PromptStruct

0,

&DataVerify))

{

printf("The decrypted data is: %s\n", DataVerify.pbData);

printf("The description of the data was: %S\n",pDescrOut);

}

else

{

HandleError("Decryption error!");

}

//---

// At this point, memcmp could be used to compare DataIn.pbData and

// DataVerify.pbDate for equality. If the two functions worked

// correctly, the two byte strings are identical.

//---

// Clean up.

delete randomBytes;

LocalFree(pDescrOut);

LocalFree(DataOut.pbData);

LocalFree(DataVerify.pbData);

} // End of main

//--

// This example uses the function HandleError, a simple error

// handling function, to print an error message to the standard error

// (stderr) file and exit the program.

// For most applications, replace this function with one
66 Chapter 8: Accessing QBMS from Desktop Applications
(c) 2008 Intuit Inc. All rights reserved.

// that does more extensive error reporting.

void HandleError(char *s)

{

fprintf(stderr,"An error occurred in running the program. \n");

fprintf(stderr,"%s\n",s);

fprintf(stderr, "Error number %x.\n", GetLastError());

fprintf(stderr, "Program terminating. \n");

exit(1);

} // End of HandleError
Using wincrypt to Store Connection Tickets 67
(c) 2008 Intuit Inc. All rights reserved.

68 Chapter 8: Accessing QBMS from Desktop Applications
(c) 2008 Intuit Inc. All rights reserved.

CHAPTER 9 1

ACCESSING QBMS FROM HOSTED WEB APPLICATIONS 1

This chapter describes what you need to do to enable a hosted web application to
communicate with QBMS.

Task Checklist
To enable your hosted web application to communicate with QBMS, you must do the
following:

1. Obtain a PTC QBMS account for testing during development, and a production one for
live testing.

2. Register your application with IDN (appreg.intuit.com).

3. Obtain a server certificate from a supported root certificate authority (see Appendix D).

4. Obtain a client certificate by generating a certificate signing request (CSR) and use the
appreg.intuit.com site to get it signed by Intuit.

5. Understand and follow the QBMS security requirements for hosted web applications.

6. In your code, using SSL, implement the presentation of the client certificate to be used
when POSTing to QBMS.

7. In your code, prompt your merchant/customer to grant a connection ticket authorizing
your application to access the merchant’s QBMS account. Respond by sending
merchant to the QBMS login page to get a connection ticket. QBMS POSTs the
connection ticket back to the application subscription URL you specified when you
registered your application. Handle this POST at that URL and store the connection
ticket securely.

8. In your code, implement session ticket handling code. That is, prior to sending QBMS
transaction requests for a particular merchant, get a session ticket by sending a
SignonMsgsRq containing a SignonAppCertRq with that merchant’s connection ticket.
You’ll POST this to the QBMS data exchange URL to get the session ticket in the
SignonAppCertRs response.

9. In your code, build the desired requests in a qbmsXML string. This string contains a
SignonMsgsRq containing a SignonTicketRq with the session ticket from the
SignonAppCertRs in the previous step, followed by the QBMS transaction requests.
POST this whole XML string to the QBMS data exchange URL and process the
response.

10. In your code, handle connection ticket cancellation notification from QBMS. (If the
merchant cancels the connection ticket, QBMS sends a notification to the Application
Cancel URL that you specified when you registered your application.)

We’ll describe these tasks in more detail in this chapter.
Task Checklist 69
(c) 2008 Intuit Inc. All rights reserved.

appreg.intuit.com
appreg.intuit.com

Obtaining a QBMS Account

You must obtain a PTC test account before you can POST transactions to the PTC
environment. You must obtain a real QBMS account if you want to POST in the production
QBMS environment for live testing.

Finally, your customer/merchant needs to sign up and obtain a real QBMS account before
they can run your production application.

Signing up for a PTC account or a real QBMS account is covered in Chapter 5, “Signing
Up for a PTC Test QBMS Merchant Account.”

Registration with Intuit Gateways is Required for Access
All applications are required to register with IDN before they can access QBMS. If you
don’t register, the Intuit gateways won’t let your application into the QBMS data centers.

To register, visit appreg.intuit.com. (Additional registration instructions are located at the
IDN developer website.)

Keep in mind there are two separate environments that you need to register for:

• Register your application with IDN to use the PTC test environment, to test your
application.

• Register your application with IDN to use the QBMS production environment when
you’re ready to test live or go live.

IMPORTANT

After registering for PTC, you will be given an AppID that you
use to communicate with PTC. After registering for
production, you will be given a different AppID that you use
to communicate with production QBMS. The AppID for the
PTC test environment will not work with QBMS production and
vice versa!

Hosted Applications Need Certificates to Access Intuit Gateways

Your hosted web application needs a server certificate in order to receive callbacks from
QBMS. Appendix D lists the root certificate authorities (CAs) that are known to work with
QBMS.

Your hosted web application also needs a client certificate signed by Intuit in order to
POST QBMS transaction requests to QBMS. (You need register your application with IDN
before you can generate your certificate signing request.) If you haven’t done this before, or
are unsure of the process, more instructions are provided at the IDN website at this
location:
70 Chapter 9: Accessing QBMS From Hosted Web Applications
(c) 2008 Intuit Inc. All rights reserved.

www.appreg.intuit.com
http://developer.intuit.com/qbms/integration_center/?id=1294

xhttp://developer.intuit.com/qbms/integration_center/?id=1294x

Security Requirements

The following security rules must be observed by your application:

• Your application may not automate any part of the QBMS user interface, including the
application attachment (authorization) process.

• Your application may not request and/or store the user’s QuickBooks or QBMS logon
and password.

• You cannot share connection tickets between different applications. Each of your
applications needs to get its own tickets.

• The connection ticket must be stored securely

• Prevent your pages from being cached, for example by using meta tags.

Failure to follow these requirements may result in your application losing access to QBMS.

How to Present the Client Certificate to QBMS

The Intuit-signed client certificate must be presented to QBMS at every POST to QBMS
sites. You have to use SSL at your web server in conjunction with the client certificate.

An ASP.NET Example

Details on certificate management for ASP.NET implementations are available at the IDN
website, in the AlphaGeek archives. Also, check out the sample program IDNRequestor at
the SDK subdirectory \samples\qbms\c-sharp.

A Java Example: Presenting a Client Certificate in a Java Servlet

Suppose your server application is implemented via a Java servlet. You just add a few lines
of code in your servlet’s init method to specify the use of SSL, your keystore, and your
keystore password, and the IDN certificate will be used automatically for all POSTs to
QBMS.

To use the SSL functionality provided by Java, you need to import the javax.net and
javax.net.ssl packages supplied in the Java JSSE API. You also need to import
com.sun.net.ssl.*.

The following code (from the sample servlet WebTxnTester in the SDK subdirectory
\samples\qbms) shows the required lines in the servlet init method:
Security Requirements 71
(c) 2008 Intuit Inc. All rights reserved.

http://developer.intuit.com/qbms/integration_center/?id=1294
http://developer.intuit.com/developer/newsletter.asp?id=350

public void init(ServletConfig config) throws ServletException {
 super.init(config);

// Set up the SSL properties to find the keystore correctly
System.setProperty("javax.net.debug", "all");
System.setProperty("javax.net.ssl.keyStore",

"/var/tomcat4/keys/keystore");
System.setProperty("javax.net.ssl.keyStorePassword", "SDKTest");
System.setProperty("java.protocol.handler.pkgs",

"com.sun.net.ssl.internal.www.protocol");

/ Make sure java is configured to handle HTTPS by adding the
// appropriate SSL provider to the security manager.
java.security.Security.addProvider(new

com.sun.net.ssl.internal.ssl.Provider());
}

In the sample code above, /var/tomcat4/keys/keystore is the keystore used in the
sample. In your own servlet, you would replace this with the path to your own keystore.
Similarly, SDKTest is the sample’s password: you would specify your own keystore
password.

How to Implement Connection Ticket Support

Implementing connection ticket support in hosted applications differs from desktop
application implementations. In a hosted application, you do have to send the merchant to
the QBMS connection list URL to create a connection ticket to grant your application
authorization to access the merchant’s account, just like you do for a desktop application.

However, there is no copy and paste of connection tickets into a hosted application. Instead,
once created and assigned by the merchant, the connection ticket is automatically POSTed
by QBMS to the subscription URL that you specified when you registered your application.
You just need to handle the ticket POST at that URL.

Also, unlike desktop applications, there can be no session authentication for hosted
applications, so you don’t code for that possibility.

Implementing connection ticket support in hosted web applications consists of the
following:

1. Enabling the merchant to start the authorization process from your main form in the
web browser and responding to the merchant action by sending the merchant to the
QBMS connection page to create a connection ticket. QBMS will POST the connection
ticket back to your application.

2. Handling the connection ticket POST from QBMS at the application subscription URL
you specified when you registered your application. You’ll extract the connection ticket
from the POST and store it securely for future use for that particular merchant. Your
application will use it to automatically obtain a session ticket when beginning a session
to send QBMS transactions to that merchant’s QBMS account, as described in “Posting
QBMS Transactions to the Data Exchange URL.”
72 Chapter 9: Accessing QBMS From Hosted Web Applications
(c) 2008 Intuit Inc. All rights reserved.

Sending the Merchant to QBMS to Create a Connection Ticket

In your main form displayed in the user’s web browser, provide a means for the merchant to
start the authorization process, for example, a Subscribe button. Whatever the means,
respond to the merchant’s action by sending the merchant to the QBMS login page at the
following URL:

for production:

https://login.quickbooks.com/j/qbn/sdkapp/confirm?appid=<myAppid>&serviceid=1002

&appdata=<myAppData>

for PTC test:

https://login.ptc.quickbooks.com/j/qbn/sdkapp/confirm?appid=<myAppid> &serviceid=1002

&appdata=<myAppData>

where

-https://login.quickbooks.com/j/qbn/sdkapp/confirm?
or

https://login.ptc.quickbooks.com/j/qbn/sdkapp/confirm?

is the location of the login page.

-myAppID
is the appID assigned to your application when you registered the application.

-serviceid
Must be set to the value 1002.

myAppData
is the unique (unique within the application) ID representing the merchant for
whom the connection ticket is intended. The AppData gives you a way to identify
which connection ticket belongs with which merchant, so you would normally store
this along with the returned connection ticket.

After you send the merchant to the QBMS login site, the merchant is led through the
authorization process. After the process is complete and a connection ticket is created and
assigned, the user is notified of the success, and a connection ticket is returned to your
Application Subscription callback URL.

Handling the Connection Ticket POST from QBMS

After your application gets the POST from QBMS, you need to extract the connection
ticket from the POST.
How to Implement Connection Ticket Support 73
(c) 2008 Intuit Inc. All rights reserved.

Example: Extracting the Connection Ticket

The following sample method (from the WebTxntester sample from the SDK samples\qbms
subdirectories, is invoked from the servlet doPost method, which handles the POST back
from QBMS.

In this snippet, the HTTP request (from the QBMS POST of the connection ticket from the
merchant) is queried for the appdata and the connection ticket parameters, the connection
ticket, and an intermediate session ticket.

protected void processQBTicket(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, java.io.IOException {
PrintWriter outmain = null;
log("in processQBTicket");
try {

PrintWriter out = response.getWriter();
outmain = out;
String conntkt = null;
String appdata = null;
String tkt = null;
String appid = null;

if (request.getContentType() != null) {
conntkt = request.getParameter("conntkt");
appdata = request.getParameter("appdata");
appid = request.getParameter("appid");
}

}

The WebTxnTester sample from the SDK stores this data, if you want to see that aspect of
it.

Getting a Session Ticket for Use in QBMS Transaction POSTs

A session ticket is valid for 60 minutes after its last use, or for an absolute maximum of 24
hours even if used within every 60 minute timeframe, then it expires.

Remember that you need to have a connection ticket before getting a session ticket. Also,
remember that connection tickets aren’t directly used in QBMS transactions from hosted
applications, only session tickets are.

To see what we mean by this, take a look at a typical QBMS transaction POST from a
hosted web application looks like the one in Listing 9-1.
74 Chapter 9: Accessing QBMS From Hosted Web Applications
(c) 2008 Intuit Inc. All rights reserved.

_______Listing 9-1 Fully formed QBMS transaction request ready to post to QBMS

<?xml version="1.0" ?>

<?qbmsxml version="2.0"?>

<QBMSXML>

<SignonMsgsRq>

<SignonTicketRq>

<ClientDateTime>2006-09-29T08:46:58</ClientDateTime>

<SessionTicket>V1-32-102983765412908762935g:85095501</SessionTicket>

</SignonTicketRq>

</SignonMsgsRq>

<QBMSXMLMsgsRq>

<CustomerCreditCardAuthRq requestID="23909">

<TransRequestID>E09C86CF</TransRequestID>

<CreditCardNumber>4111111111111111</CreditCardNumber>

<ExpirationMonth>12</ExpirationMonth>

<ExpirationYear>2008</ExpirationYear>

<IsECommerce>true</IsECommerce>

<Amount>203.00</Amount>

<CreditCardAddress>23 Garcia Ave</CreditCardAddress>

<CreditCardPostalCode>94043</CreditCardPostalCode>

</CustomerCreditCardAuthRq>

</QBMSXMLMsgsRq>

</QBMSXML>

Notice the SignonTicketRq, which contains a session ticket and not a connection ticket.
What happened to the connection ticket? How did we get the session ticket? We get the
session by doing this:

1. To the QBMS data exchange URL, POST a SignonMsgsRq request that contains an
SignonAppCertRq request. Notice that you’ll need to supply the connection ticket here.

2. The response from QBMS will contain a SignonAppCertRs that contains the session
ticket. Retrieve and use this session ticket in all subsequent QBMS transaction POSTs
for the current session for the merchant.

Listing 9-2 shows a sample QBMSXML string like the one you need to POST:

_______Listing 9-2 Sending SignonAppCertRq to Get the Session Ticket

<?xml version="1.0" ?>

<?qbmsxml version="2.0"?>

<QBMSXML>

<SignonMsgsRq>

<SignonAppCertRq>

<ClientDateTime>2006-09-20T15:49:26</ClientDateTime>

<ApplicationLogin>WebTxnTester.intuit.com</ApplicationLogin>

<ConnectionTicket>TGT-77-102983765412908762935Q</ConnectionTicket>
Getting a Session Ticket for Use in QBMS Transaction POSTs 75
(c) 2008 Intuit Inc. All rights reserved.

</SignonAppCertRq>

</SignonMsgsRq>

</QBMSXML>

Of course, your own values for date/time, application login, and the connection ticket
would be different, and the connection ticket would of course be different for each of your
merchants.

This is where you’d POSTing the SignonAppCertRq to get the session ticket:

For production QBMS:

https://webmerchantaccount.quickbooks.com/j/AppGateway

For the PTC test environment:

https://webmerchantaccount.ptc.quickbooks.com/j/AppGateway

Posting QBMS Transactions to the Data Exchange URL

Listing 9-1 shows what your XML string should look like when you POST QBMS
transactions. That listing shows only one QBMS transaction request: you can have a
maximum of 20 requests in each POST.

Notice that a hosted web application cannot POST to the same QBMS data exchange URL
that desktop applications do. Hosted web applications and desktop applications must use
different URLs.

The following is the URL string you must use when posting XML to a QuickBooks
company:

For production QBMS:

https://webmerchantaccount.quickbooks.com/j/AppGateway

For PTC test:

https://webmerchantaccount.ptc.quickbooks.com/j/AppGateway

URLs Used to Access QBMS from Hosted Applications

The URLs used to access QBMS are listed in the following table.
76 Chapter 9: Accessing QBMS From Hosted Web Applications
(c) 2008 Intuit Inc. All rights reserved.

Table 9-1 PTC Test Environment and Production URLs

Function of
the URL PTC URLs Production URLs

Send user to
get
connection
ticket

https://login.ptc.quickbooks.com/j/qbn/
sdkapp/
confirm?appid=<myAppid>&serviceid=1002
&appdata=<myAppData>

where MyAppID is your AppId value, and
MyAppData is your own ID identifying the
merchant whose connection ticket this is.

https://login.quickbooks.com/j/qbn/sdkapp/
confirm?appid=<myAppid>&serviceid=1002
&appdata=<myAppData>

where MyAppID is your AppId value, and
MyAppData is your own ID identifying the
merchant whose connection ticket this is.

POSTing the
SignonAppCe
rt request to
get the
session ticket

https://
webmerchantaccount.ptc.quickbooks.com/j/
AppGateway

https://
webmerchantaccount.quickbooks.com/j/
AppGateway

Where to
POST
transaction
requests

https://
webmerchantaccount.ptc.quickbooks.com/j/
AppGateway

https://
webmerchantaccount.quickbooks.com/j/
AppGateway
URLs Used to Access QBMS from Hosted Applications 77
(c) 2008 Intuit Inc. All rights reserved.

78 Chapter 9: Accessing QBMS From Hosted Web Applications
(c) 2008 Intuit Inc. All rights reserved.

CHAPTER 10 1

SUPPORTING YOUR CUSTOMER/Merchant 1

This chapter describes some of the issues affecting your customers that you need to be
aware of.

Customers With Existing QBMS Accounts
Some of your customer/merchants may already have a QBMS account, but one that is not
set up for ecommerce applications. This will be detected when those merchants first try to
access their QBMS account via your application, and they will get a dialog screen that will
prompt them to set up their account for ecommerce.

You can add this ability to your existing QBMS account at this location in the QBMS
website. The web site calls this “adding a Web Store process to your existing account.”
Customers With Existing QBMS Accounts 79
(c) 2008 Intuit Inc. All rights reserved.

http://www.quickbooksmerchantservice.com/services/merchant_service/pricing.php
http://www.quickbooksmerchantservice.com/services/merchant_service/pricing.php

80 Chapter 10: SUPPORTING YOUR CUSTOMER/Merchant
(c) 2008 Intuit Inc. All rights reserved.

APPENDIX A 1

STATUS CODES RETURNED IN RESPONSES 1

Each qbmsXML response message returned from QBMS includes a statusCode, a
statusSeverity, and statusMessage element.

The table below lists the status codes that can be returned, along with descriptions.

Status Code Status Message Description

0 Status OK. Request succeeded.

10100 Warning. The transaction processed with the ID
had a validation error, but could not be voided
automatically. If you want to void or cancel it,
you must do so manually.

 For Example: The transaction
processed with the ID 25235 had a
validation error:(Incorrect Street
Address and Zip Code), but could not
be voided automatically. If you want to
void or cancel it, you must do so
manually

10101 Warning. The transaction processed with the ID
<id> had a validation error.

This warning can be returned if the
fraud settings for the merchant account
cause some auth transactions to be
rejected.

In this case, even in the case of a
rejected auth, the auth is kept on file
against the customer card up to 15-30
after the rejection.

10200 An error occurred while communicating with
the credit card processing gateway.

Indicates a communication problem
rather than an error resulting from
transaction content.

10201 An error occurred during login to the
processing gateway.

Could not log in to the QBMS credit
card processing gateway.

10202 An error occurred during account validation. Could not validate the QBMS account.

10300 An error occurred while converting the amount
in the field.

A numeric value was of the wrong type.
For example, some values require
integers only, others require decimals.
See the OSR for required types in the
request fields.

10301 This credit card account number is invalid. Customer’s credit card number was
invalid.

10302 An error occurred while validating the date
value in the field.

The date string format is invalid. See
the OSR for required format.

10303 A required element is empty. A mandatory element is missing from
the request. See the OSR for required
elements for the request you are using.

A required element CreditCardNumber
or Track2Data is empty.
 81
(c) 2008 Intuit Inc. All rights reserved.

10304 The string in the field is too long. The
maximum length is <length>

The request field accepts fewer
characters than the supplied string.
See the OSR for per-field character
limits.

10305 An error occurred during data validation. Unexpected data was found during the
validation.

10306 An error occurred while validating the boolean
value in the field.

You may only supply the Boolean
values true or false

10307 The string in the field is too short. The
minimum length is <length>

The expected minimum data is not
present. For example, Track3Data
requires a minimum of 23 characters.

10308 Maximum requests allowed in one POST cannot
exceed 20

You have too many requests in one
POST. A maximum of 20 is allowed.

10309 The field has an invalid format. The data has an invalid format, for
example, Track2Data is not formatted
as required.

10312 The field is invalid. You’ll get this error for various reasons.
If a value supplied in a field of type
AMTTYPE is not in the format required
by AMTTYPE, you’ll get this error.

Another instance where you’ll get this
error is if a supplied field lacks the
minimum characters required or
exceeds the maximum. For example,
ServerID in the Restaurant aggregate
must be two and only two characters.

10313 The aggregate is invalid Currently, you’ll get this error from the
Lodging aggregate if CheckInDate is
later than CheckOutDate.

10400 This account does not have sufficient funds to
process this transaction.

The attempted transaction exceeded
the customer’s credit limit on the credit
card. The transaction failed.

10401 The request to process this transaction has
been declined.

The card issuer/processor refused to
authorize the transaction. For example,
the account may have been closed, or
activities may have been temporarily
stopped for that card due to security
reasons.

10402 The merchant bank account does not support
this type of credit card.

See the list of supported credit card
types in Chapter 1 of this manual.

10403 The merchant account information submitted is
not recognized.

The QBMS account contained in the
request is not valid.

10404 This transaction has been declined, but can be
approved by obtaining a Voice Authorization
code from the card issuer.

You need to obtain a voice
authorization code from the card issuer,
then invoke the
CustomerCreditCardCharge request
with the VoiceAuthCode field filled in
with that code.

Status Code Status Message Description
82 Appendix A: Status Codes Returned in Responses
(c) 2008 Intuit Inc. All rights reserved.

10405 An error occurred while attempting to void this
transaction.

The transaction could not be voided.
Possibly the transaction has already
been settled.

10406 An error occurred while processing the capture
transaction.

This capture transaction could not be
processed for one of the following
reasons. The transaction has been
captured already, has been voided, has
expired, or the capture request has
used the incorrect authorization
transaction ID.

Also, notice that only one capture is
allowed for each auth.

10407 The merchant sale total exceeds the sales cap. The transaction amount exceeded the
per transaction limit imposed by the
card issuer.

10408 An error occurred due to invalid data format. An incorrect format was used for a field
value, such as the transaction ID.

10409 A validation error occurred while processing
this transaction. : . Please correct values and
try processing again.

Where {0} will be substituted with any
of the following error messages:

Incorrect Card Verification Code
Incorrect Zip Code
Incorrect Street Address
Incorrect Street Address and Zip Code
Card Verification Code not available
Street Address and/or Zip Code not
available

For Example: Card Declined: {Incorrect
Street Address}. Please correct values
and try to process the transaction
again.

10413 More than one batch is open. Please provide
BatchID.

The MerchantBatchClose request is
missing the BatchID.

10500 A general error occurred at the credit card
processing gateway.

An unknown server error occurred that
prevents processing of the qbmsxml
request.

10501 A general system error occurred while
processing the request.

An unknown server error occurred that
prevents processing of the qbmsxml
request.

Status Code Status Message Description
 83
(c) 2008 Intuit Inc. All rights reserved.

84 Appendix A: Status Codes Returned in Responses
(c) 2008 Intuit Inc. All rights reserved.

APPENDIX B 1

SIGNON REQUESTS AND RESPONSES XML 1

Each qbmsXML document that is posted to the QBMS server must include a fully
constructed signon message. The responses returned from the server therefore also include
a signon response.

Instructions for constructing these signon messages and handling their responses are
provided in the chapters in this guide about integrating a desktop application and
integrating a server application.

The following sample XML shows how the signon messages and the corresponding
responses are structured.

<?xml version="1.0" ?>
<!--
-->
<!--
=== -->
<!-- INTUIT CONFIDENTIAL.
-->
<!-- Copyright 2001-2002 Intuit Inc. All rights reserved.
-->
<!-- Use is subject to the terms specified at:
-->
<!-- http://developer.intuit.com/legal/devsite_tos.html
-->
<!--
-->
<!--
=== -->
<!--
-->
<!-- Sample data for dtd: qbmsxmlso20.dtd
-->
<!--
-->
<!-- This dtd contains requests/responses for the Signon message set.
-->
<!--
-->
<!-- Comments use the following abbreviations:
-->
<!-- QBD stands for the QuickBooks Desktop SDK
-->
<!-- QBMS stands for the QBMS SDK -->
<!--
-->
<!-- Message set Signon contains the following requests and responses:
-->
<!--
 85
(c) 2008 Intuit Inc. All rights reserved.

-->
<!-- Signon (AppCert, Desktop and Ticket)
-->
<!--
-->
<!-- This means that Signon has, for example, 3 separate requests.
-->
<!-- They are: SignonAppCert, SignonDesktop and SignonTicket
-->
<!--SignonAppCert is for web apps only -->
<!--
-->
<QBMSXML>

<SignonMsgsRq>
<!-- SignonAppCertRq contains 1 optional attribute: ’requestID’ -->
<SignonAppCertRq requestID = "UUIDTYPE">

<ClientDateTime>DATETIMETYPE</ClientDateTime>
<ApplicationLogin>STRTYPE</ApplicationLogin>
<ConnectionTicket>STRTYPE</ConnectionTicket>
<InstallationID>IDTYPE</InstallationID> <!-- opt -->
<Language>STRTYPE</Language> <!-- opt -->
<AppID>STRTYPE</AppID> <!-- opt -->
<AppVer>STRTYPE</AppVer> <!-- opt -->

</SignonAppCertRq>
<!--SignonDesktopRq contains 1 optional attribute: ’requestID’ -->
<SignonDesktopRq requestID = "UUIDTYPE">

<ClientDateTime>DATETIMETYPE</ClientDateTime>
<ApplicationLogin>STRTYPE</ApplicationLogin>
<ConnectionTicket>STRTYPE</ConnectionTicket>
<InstallationID>IDTYPE</InstallationID> <!-- opt -->
<Language>STRTYPE</Language> <!-- opt -->
<AppID>STRTYPE</AppID> <!-- opt -->
<AppVer>STRTYPE</AppVer> <!-- opt -->

</SignonDesktopRq>
<!-SignonTicketRq contains 1 optional attribute: ’requestID’>
<SignonTicketRq requestID = "UUIDTYPE">

<ClientDateTime>DATETIMETYPE</ClientDateTime>
<SessionTicket>STRTYPE</SessionTicket>
<AuthID>IDTYPE</AuthID> <!-- opt -->
<InstallationID>IDTYPE</InstallationID> <!-- opt -->
<Language>STRTYPE</Language> <!-- opt -->
<AppID>STRTYPE</AppID> <!-- opt -->
<AppVer>STRTYPE</AppVer> <!-- opt -->

</SignonTicketRq>
</SignonMsgsRq>
<SignonMsgsRs>

<!-- SignonAppCertRs contains 4 attributes -->
<!-- ’requestID’ is optional -->
<!-- ’statusCode’ is required -->
<!-- ’statusSeverity’ is required -->
<!-- ’statusMessage’ is optional -->
<SignonAppCertRs requestID = "UUIDTYPE"

statusCode = "INTTYPE"
statusSeverity = "STRTYPE" statusMessage = "STRTYPE">

<ServerDateTime>DATETIMETYPE</ServerDateTime>
<SessionTicket>STRTYPE</SessionTicket> <!-- opt -->

</SignonAppCertRs>
86 Appendix B: Signon Requests and Responses XML
(c) 2008 Intuit Inc. All rights reserved.

<!-- SignonDesktopRs contains 4 attributes -->
<!-- ’requestID’ is optional -->
<!-- ’statusCode’ is required -->
<!-- ’statusSeverity’ is required -->
<!-- ’statusMessage’ is optional -->
<SignonDesktopRs requestID = "UUIDTYPE"

statusCode = "INTTYPE" statusSeverity = "STRTYPE"
statusMessage = "STRTYPE">

<ServerDateTime>DATETIMETYPE</ServerDateTime>
<SessionTicket>STRTYPE</SessionTicket> <!-- opt -->

</SignonDesktopRs>
<!-- SignonTicketRs contains 4 attributes -->
<!-- ’requestID’ is optional -->
<!-- ’statusCode’ is required -->
<!-- ’statusSeverity’ is required -->
<!-- ’statusMessage’ is optional -->
<SignonTicketRs requestID = "UUIDTYPE" statusCode = "INTTYPE"

statusSeverity = "STRTYPE" statusMessage = "STRTYPE">
<ServerDateTime>DATETIMETYPE</ServerDateTime>

<SessionTicket>STRTYPE</SessionTicket> <!-- opt -->
</SignonTicketRs>

</SignonMsgsRs>
</QBMSXML>

SignonDesktopRq

The elements, attributes, and their values within the SignonDesktopRq element are
described in Table B-1.

Table B-1 SignonDesktopRq Values

Element Name Description

ClientDateTime The ClientDateTime is the current system time, which provides a
timestamp for the signon request.

Required.

ApplicationLogin The AppLogin value returned to you when you registered your
application with IDN.

Required only for SignonDesktopRq.

ConnectionTicket The connection ticket created by the user at the QBMSlogin site and
pasted into your application.

Required.

InstallationID Normally not used.

Language Normally not used.

AppID Normally not used.

AppVer Normally not used.
 87
(c) 2008 Intuit Inc. All rights reserved.

SignonDesktopRs

The elements, attributes, and their values within the SignonDesktopRs element are
described in Table B-2.

SignonTicketRq

The elements, attributes, and their values within the SignonTicketRq element are described
in Table B-3

Table B-2 SignonDesktopRs Values

Element Name Description

ServerDateTime The current system time at the QuickBooks Online Site server
taken at the time the request was processed.

StatusCode The value indicating success or failure, with the value 0 indicating
success.

There is a failure, the code indicates the nature of the failure, with
various values possibly returned. A status code of 2020 means
session authentication is required

See Appendix A for a list of possible values.

SessionTicket If the SignonDesktopRq was successful, a session ticket is returned
in the response. You don’t have to do anything with this ticket.

StatusSeverity Indicates level of failure.

StatusMessage Provides a user-readable indication of the failure.

Table B-3 SignonTicketRq Values

Element Name Description

ClientDateTime The ClientDateTime is the current system time, which provides a
timestamp for the signon request.

Required.

ApplicationLogin Normally not used.

SessionTicket The session ticket.

InstallationID Normally not used.

Language Normally not used.

AppID Normally not used..

AppVer Normally not used.
88 Appendix B: Signon Requests and Responses XML
(c) 2008 Intuit Inc. All rights reserved.

APPENDIX C 1

THE QBMSLIB CONVENIENCE LIBRARY 1

This appendix describes QBMSLib, which is a fully functional .NET class library wrapped
around qbmsXML. The purpose of this library is to provide an alternative to XML in
sending requests and processing responses.

We provide QBMSLib in source form as a sample to allow you to easily customize it to
your specific needs. You can think of it as a form of “open source” foundation classes for
QuickBooks Merchant Services.

Structure

QBMSLib implements the Intuit.QBMSLib namespace in which there is one primary class
(QBMSRequestor), six response encapsulation classes (one for each request supported by
QBMS, for example AuthResponse), one interface (RequestSender) for POSTing requests
to QBMS, and one implementation of that interface (SimpleRequestSender) which provides
sufficient functionality for desktop-based applications to work with QBMS.

To use this library for a hosted web application, you will need to supply another impl of the
RequestSender interface that is configured to supply a client certificate. (See the sample
program IDNRequestor included in the QB SDK samples subdirectory \samples\qbms\c-
sharp\IDNRequestor.)

The QBMSRequestor class is the workhorse of the library, in addition to the constructor
(which takes parameters to capture your registered AppID, etc.) this class implements six
methods, one for each request supported by QBMS (for example the SendAuthRequest
method sends a CustomerCreditCardAuthRq message to QBMS) and the return type of
each method is class which encapsulates all the fields returned by that request as well as the
result code and result message from QBMS.

For example, to send a CustomerCreditCardAuthRq to QBMS we would use the following
code (note that the parameters correspond to the fields that the OSR indicates could be
supplied to the CustomerCreditCardAuthRq message:

QBMSRequestor requestor;
…
AuthResponse resp
Resp = Requestor.SendAuthRequest(CCNum,ExpireMonth,

ExpireYear,Amount,
CardHolderName,BillAddr,
BillZip,
CommercialCardCode,
SalesTaxAmount,
CardSecurityCode,
IsECommerce, IsRecurring);
Structure 89
(c) 2008 Intuit Inc. All rights reserved.

And we could then view the fields of the response (as shown by the OSR) from the Resp
object:

int result = Resp.ResultCode;
string transID = Resp.CreditCardTransID;

Reference

Interfaces

Enumerations

Classes

Type Summary

RequestSender

The RequestSender interface is used by the QBMSRequestor to send
qbmsXML requests to QuickBooks merchant services. Any object which
implements this interface will work with QBMSRequestor, including the
QBMSLib.SimpleRequestSender which just does a standard HTTPS POST,
with no client certificate presentation. The QBMSDonorSample sample
shows the use of an EnterpriseServices COM+ component to send requests
with a client certificate for web solutions.

Type Summary

QBMSAppType
Used in the QBMSRequestor constructor to indicate if the application using
QBMSRequestor is registered as a web or desktop application.

Type Summary

AuthResponse

Encapsulates the parsing of the XML response from QBMS and
making that data available to clients. Contains the following properites
for authorization transaction ID, authorization code, result of address
validation for street and zip data result of security code checking.

CaptureResponse

Encapsulates the parsing of the XML response from QBMS and
making that data available to clients. Contains the following properites
for authorization transaction ID, authorization code, result of address
validation for street and zip data result of security code checking.
90 Appendix C: The QBMSLib Convenience Library
(c) 2008 Intuit Inc. All rights reserved.

RequestSender Interface

Summary

public interface RequestSender

The RequestSender interface is used by the QBMSRequestor to send qbmsXML requests to QuickBooks
merchant services. Any object which implements this interface will work with QBMSRequestor,
including the QBMSLib.SimpleRequestSender which just does a standard HTTPS POST, with no client
certificate presentation. The QBMSDonorSample sample shows the use of an EnterpriseServices COM+
component to send requests with a client certificate for web solutions.

Method Members

public String SendRequest(String URL, String request)

send an XML request to qbMS and return the XML response.

Parameters:

ChargeResponse

Encapsulates the parsing of the XML response from QBMS and
making that data available to clients. Contains the following properites
for authorization transaction ID, authorization code, result of address
validation for street and zip data result of security code checking.

QBMSRequestor

The main class for this library, provide information regarding your
app's registration with QBMS (from http://appreg.intuit.com) when
you construct this class. There are methods for sending each supported
QBMS request with the respose returned as a unique object type
containing properties corresponding to the data returned by QBMS.

RefundResponse

Encapsulates the parsing of the XML response from QBMS and
making that data available to clients. Contains the following properites
for refund transaction ID, authorization code, result of address
validation for street and zip data result of security code checking.

SimpleRequestSender
The SimpleRequestSender class implements the RequestSender
interface and simply does a POST of the request to the given URL, no
client certificate set up, etc. This is fine for desktop-based applications.

VoiceAuthResponse

Encapsulates the parsing of the XML response from QBMS and
making that data available to clients. Contains the following properites
for authorization transaction ID, authorization code, result of address
validation for street and zip data result of security code checking.

VoidResponse

Encapsulates the parsing of the XML response from QBMS and
making that data available to clients. Contains the following properites
for authorization transaction ID, authorization code, result of address
validation for street and zip data result of security code checking.
RequestSender Interface 91
(c) 2008 Intuit Inc. All rights reserved.

• String URL : The URL to which the request should be POSTed
• String request : The XML string to POST

QBMSAppType Enumeration

Summary

public enumeration QBMSAppType

Used in the QBMSRequestor constructor to indicate if the application using QBMSRequestor is
registered as a web or desktop application.

Enumeration Members

SimpleRequestSender Class

Summary

public class SimpleRequestSender : Intuit.QBMSLib.RequestSender

The SimpleRequestSender class implements the RequestSender interface and simply does a POST of the
request to the given URL, no client certificate set up, etc. This is fine for desktop-based applications. See
the QBMSDonorSample for an example of a class that implements the RequestSender interface to
manage client certificates for a web application.

Constructor Members

public SimpleRequestSender()

Initializes a new instance of the class.

Method Members

public String SendRequest(String URL, String request)

send an XML request to qbMS and return the XML response.

Parameters:

• String URL : The URL to which the request should be POSTed
• String request : The XML string to POST

QBMSRequestor Class

Summary

public class QBMSRequestor

Field Summary
Desktop
web
92 Appendix C: The QBMSLib Convenience Library
(c) 2008 Intuit Inc. All rights reserved.

The main class for this library, provide information regarding your app's registration with QBMS (from
http://appreg.intuit.com) when you construct this class. There are methods for sending each supported
QBMS request with the respose returned as a unique object type containing properties corresponding to
the data returned by QBMS.

Constructor Members

public QBMSRequestor(QBMSAppType type, String appLogin, String connTkt, String installID,
String lang, String appID, String appVer, RequestSender sender, Boolean useIDNBeta)

Create a QBMSRequestor with all the information about your application registration from http://
appreg.intuit.com, and other infor needed by the QBMSXML Signon blocks.

Parameters:

• QBMSAppType type : hosted or desktop
• String appLogin : registered applogin name
• String connTkt : the connection ticket to use for the current user
• String installID : installation ID to use, can be empty string
• String lang : English is only valid value at this time
• String appID : appID you got when you registered at appreg.intuit.com
• String appVer : application version string

• RequestSender sender : An object implementing the QBMSLib.RequestSender interface
• Boolean useIDNBeta : boolean indicating whether to use IDNBeta or production environment

Method Members

public AuthResponse SendAuthRequest(String CCNum, String ExpireMonth, String ExpireYear,
String Amount, String CCName, String CCAddr, String CCZip, String CCCCode, String
STAmount, String CSCode, Boolean IsECommerce, Boolean IsRecurring)

Send a CustomerCreditCardAuthRq Request.

Parameters:

• String CCNum : Credit card number
• String ExpireMonth : card expiration month
• String ExpireYear : card expiration year
• String Amount : amount to authorize
• String CCName : name on the card
• String CCAddr : card billing street address (may be empty string)

• String CCZip : card billing postal code (may be empty string)
• String CCCCode : commercial card code (may be empty string)
• String STAmount : sales tax amount (may be empty string)
• String CSCode : card security code (may be empty string)
RequestSender Interface 93
(c) 2008 Intuit Inc. All rights reserved.

• Boolean IsECommerce : true if this request is part of an online transaction, false if from a telephone
order, etc.
• Boolean IsRecurring : true if the card will be rebilled at regular intervals
public CaptureResponse SendCaptureRequest(String transID, String amount)

Send a request to capture (charge) a prior authorization

Parameters:

• String transID : the transaction ID from a previous Auth request
• String amount : amount to capture

public ChargeResponse SendChargeRequest(String CCNum, String ExpireMonth, String
ExpireYear, String Amount, String CCName, String CCAddr, String CCZip, String CCCCode,
String STAmount, String CSCode, Boolean IsECommerce, Boolean IsRecurring)

Authorize and charge a card in one swoop.

Parameters:

• String CCNum : Credit card number
• String ExpireMonth : card expiration month
• String ExpireYear : card expiration year
• String Amount : amount to authorize
• String CCName : name on the card
• String CCAddr : card billing street address (may be empty string)

• String CCZip : card billing postal code (may be empty string)
• String CCCCode : commercial card code (may be empty string)
• String STAmount : sales tax amount (may be empty string)
• String CSCode : card security code (may be empty string)
• Boolean IsECommerce : true if this request is part of an online transaction, false if from a telephone
order, etc.
• Boolean IsRecurring : true if the card will be rebilled at regular intervals

public RefundResponse SendRefundRequest(String CCNum, String ExpireMonth, String
ExpireYear, String Amount, String CCName, String CCCCode, String STAmount, Boolean
IsECommerce)

Refund a customer credit card.

Parameters:

• String CCNum : Credit card number
• String ExpireMonth : card expiration month
94 Appendix C: The QBMSLib Convenience Library
(c) 2008 Intuit Inc. All rights reserved.

• String ExpireYear : card expiration year
• String Amount : amount to authorize

• String CCName : name on the card
• String CCCCode : commercial card code (may be empty string)
• String STAmount : sales tax amount (may be empty string)
• Boolean IsECommerce : true if this request is part of an online transaction, false if from a telephone
order, etc.

public VoiceAuthResponse SendVoiceAuthRequest(String CCNum, String ExpireMonth, String
ExpireYear, String Amount, String AuthCode, String CCCCode, String STAmount, Boolean
IsECommerce)

Authorize a card with a voice authorization code

Parameters:

• String CCNum : Customer credit card number

• String ExpireMonth : Card expiration month
• String ExpireYear : Card expiration year
• String Amount : Amount of charge
• String AuthCode : voice authorization code
• String CCCCode : Commercial card code
• String STAmount : Sales tax amount
• Boolean IsECommerce :
public VoidResponse SendVoidRequest(String transID)

Void a previous card transaction

Parameters:

• String transID : the transaction ID to void

AuthResponse Class

Summary

public class AuthResponse

Encapsulates the parsing of the XML response from QBMS and making that data available to clients.

Property Members

Name Access Summary
AuthorizationCode : String public
AVSStreet : String public
RequestSender Interface 95
(c) 2008 Intuit Inc. All rights reserved.

CaptureResponse Class

Summary

public class CaptureResponse

Encapsulates the parsing of the XML response from QBMS and making that data available to clients.

Property Members

ChargeResponse Class

Summary

public class ChargeResponse

Encapsulates the parsing of the XML response from QBMS and making that data available to clients.

Property Members

AVSZip : String public
CardSecurityCodeMatch : String public
CreditCardTransID : String public
ResultCode : Int32 public
ResultMessage : String public

Name Access Summary
AuthorizationCode : String public
CreditCardTransID : String public
MerchantAccountNumber : String public
PaymentGroupingCode : String public
PaymentStatus : String public
ReconBatchID : String public
ResultCode : Int32 public
ResultMessage : String public
TxnAuthorizationStamp : String public
TxnAuthorizationTime : String public

Name Access Summary
AuthorizationCode : String public
AVSStreet : String public
AVSZip : String public
CardSecurityCodeMatch : String public
CreditCardTransID : String public
MerchantAccountNumber : String public
PaymentGroupingCode : String public
96 Appendix C: The QBMSLib Convenience Library
(c) 2008 Intuit Inc. All rights reserved.

RefundResponse Class

Summary

public class RefundResponse

Encapsulates the parsing of the XML response from QBMS and making that data available to clients.

Property Members

VoidResponse Class

Summary

public class VoidResponse

Encapsulates the parsing of the XML response from QBMS and making that data available to clients.

Property Members

VoiceAuthResponse Class

Summary

public class VoiceAuthResponse

PaymentStatus : String public
ReconBatchID : String public
ResultCode : Int32 public
ResultMessage : String public
TxnAuthorizationStamp : String public
TxnAuthorizationTime : String public

Name Access Summary
CreditCardTransID : String public
MerchantAccountNumber : String public
PaymentGroupingCode : String public
PaymentStatus : String public
ReconBatchID : String public
ResultCode : Int32 public
ResultMessage : String public
TxnAuthorizationStamp : String public
TxnAuthorizationTime : String public

Name Access Summary
CreditCardTransID : String public
ResultCode : Int32 public
ResultMessage : String public
RequestSender Interface 97
(c) 2008 Intuit Inc. All rights reserved.

Encapsulates the parsing of the XML response from QBMS and making that data available to clients.

Property Members

Name Access Summary
AuthorizationCode : String public
CreditCardTransID : String public
MerchantAccountNumber : String public
PaymentGroupingCode : String public
PaymentStatus : String public
ReconBatchID : String public
ResultCode : Int32 public
ResultMessage : String public
TxnAuthorizationStamp : String public
TxnAuthorizationTime : String public
98 Appendix C: The QBMSLib Convenience Library
(c) 2008 Intuit Inc. All rights reserved.

APPENDIX D 1

SUPPORTED ROOT CERTIFICATE AUTHORITIES 1

You can reduce risk to your project by using root CAs that are already known to work with
QBMS. If you use another authority and encounter problems it may take awhile to get the
issues resolved.

The following root CA providers are known to work with QBMS. (Each group of owner/
issuers are one item.)

Baltimore CyberTrust

Owner: CN=Baltimore CyberTrust Code Signing Root, OU=CyberTrust, O=Baltimore, C=IE

Issuer: CN=Baltimore CyberTrust Code Signing Root, OU=CyberTrust, O=Baltimore, C=IE

Owner: CN=Baltimore CyberTrust Root, OU=CyberTrust, O=Baltimore, C=IE

Issuer: CN=Baltimore CyberTrust Root, OU=CyberTrust, O=Baltimore, C=IE

Equifax

Owner: OU=Equifax Secure Certificate Authority, O=Equifax, C=US

Issuer: OU=Equifax Secure Certificate Authority, O=Equifax, C=US

Owner: CN=Equifax Secure eBusiness CA-1, O=Equifax Secure Inc., C=US

Issuer: CN=Equifax Secure eBusiness CA-1, O=Equifax Secure Inc., C=US

Owner: CN=Equifax Secure Global eBusiness CA-1, O=Equifax Secure Inc., C=US

Issuer: CN=Equifax Secure Global eBusiness CA-1, O=Equifax Secure Inc., C=US

GTE CyberTrust

Owner: CN=GTE CyberTrust Global Root, OU="GTE CyberTrust Solutions, Inc.", O=GTE Corporation,

C=US

Issuer: CN=GTE CyberTrust Global Root, OU="GTE CyberTrust Solutions, Inc.", O=GTE

Corporation, C=US
 99
(c) 2008 Intuit Inc. All rights reserved.

Owner: CN=GTE CyberTrust Root, O=GTE Corporation, C=US

Issuer: CN=GTE CyberTrust Root, O=GTE Corporation, C=US

Owner: CN=GTE CyberTrust Root 5, OU="GTE CyberTrust Solutions, Inc.", O=GTE Corporation, C=US

Issuer: CN=GTE CyberTrust Root 5, OU="GTE CyberTrust Solutions, Inc.", O=GTE Corporation,

C=US

RSA Data Security, Inc.

Owner: OU=Secure Server Certification Authority, O="RSA Data Security, Inc.", C=US

Issuer: OU=Secure Server Certification Authority, O="RSA Data Security, Inc.", C=US

Thawte

Owner: EMAILADDRESS=personal-basic@thawte.com, CN=Thawte Personal Basic CA, OU=Certification

Services Division, O=Thawte Consulting, L=Cape Town, ST=Western Cape, C=ZA

Issuer: EMAILADDRESS=personal-basic@thawte.com, CN=Thawte Personal Basic CA, OU=Certification

Services Division, O=Thawte Consulting, L=Cape Town, ST=Western Cape, C=ZA

Owner: EMAILADDRESS=personal-freemail@thawte.com, CN=Thawte Personal Freemail CA,

OU=Certification Services Division, O=Thawte Consulting, L=Cape Town, ST=Western Cape, C=ZA

Issuer: EMAILADDRESS=personal-freemail@thawte.com, CN=Thawte Personal Freemail CA,

OU=Certification Services Division, O=Thawte Consulting, L=Cape Town, ST=Western Cape, C=ZA

Owner: EMAILADDRESS=personal-premium@thawte.com, CN=Thawte Personal Premium CA,

OU=Certification Services Division, O=Thawte Consulting, L=Cape Town, ST=Western Cape, C=ZA

Issuer: EMAILADDRESS=personal-premium@thawte.com, CN=Thawte Personal Premium CA,

OU=Certification Services Division, O=Thawte Consulting, L=Cape Town, ST=Western Cape, C=ZA

Owner: EMAILADDRESS=premium-server@thawte.com, CN=Thawte Premium Server CA, OU=Certification

Services Division, O=Thawte Consulting cc, L=Cape Town, ST=Western Cape, C=ZA

Issuer: EMAILADDRESS=premium-server@thawte.com, CN=Thawte Premium Server CA, OU=Certification

Services Division, O=Thawte Consulting cc, L=Cape Town, ST=Western Cape, C=ZA
100 Appendix D: Supported Root Certificate Authorities
(c) 2008 Intuit Inc. All rights reserved.

Owner: EMAILADDRESS=server-certs@thawte.com, CN=Thawte Server CA, OU=Certification Services

Division, O=Thawte Consulting cc, L=Cape Town, ST=Western Cape, C=ZA

Issuer: EMAILADDRESS=server-certs@thawte.com, CN=Thawte Server CA, OU=Certification Services

Division, O=Thawte Consulting cc, L=Cape Town, ST=Western Cape, C=ZA

UTN-USERFirst

Owner: CN=AddTrust External CA Root, OU=AddTrust External TTP Network, O=AddTrust AB, C=SE

Issuer: CN=UTN-USERFirst-Hardware, OU=http://www.usertrust.com, O=The USERTRUST Network,

L=Salt Lake City, ST=UT, C=US

Owner: CN=UTN-USERFirst-Hardware, OU=http://www.usertrust.com, O=The USERTRUST Network,

L=Salt Lake City, ST=UT, C=US

Issuer: CN=UTN-USERFirst-Hardware, OU=http://www.usertrust.com, O=The USERTRUST Network,

L=Salt Lake City, ST=UT, C=US

Owner: CN=UTN-USERFirst-Network Applications, OU=http://www.usertrust.com, O=The USERTRUST

Network, L=Salt Lake City, ST=UT, C=US

Issuer: CN=UTN-USERFirst-Network Applications, OU=http://www.usertrust.com, O=The USERTRUST

Network, L=Salt Lake City, ST=UT, C=US

Valicert

Owner: EMAILADDRESS=info@valicert.com, CN=http://www.valicert.com/, OU=ValiCert Class 2

Policy Validation Authority, O="ValiCert, Inc.", L=ValiCert Validation Network

Issuer: EMAILADDRESS=info@valicert.com, CN=http://www.valicert.com/, OU=ValiCert Class 2

Policy Validation Authority, O="ValiCert, Inc.", L=ValiCert Validation Network

VeriSign

Owner: OU=Class 1 Public Primary Certification Authority, O="VeriSign, Inc.", C=US

Issuer: OU=Class 1 Public Primary Certification Authority, O="VeriSign, Inc.", C=US
 101
(c) 2008 Intuit Inc. All rights reserved.

Owner: OU=Class 2 Public Primary Certification Authority, O="VeriSign, Inc.", C=US

Issuer: OU=Class 2 Public Primary Certification Authority, O="VeriSign, Inc.", C=US

Owner: OU=Class 3 Public Primary Certification Authority, O="VeriSign, Inc.", C=US

Issuer: OU=Class 3 Public Primary Certification Authority, O="VeriSign, Inc.", C=US

Owner: OU=Class 4 Public Primary Certification Authority, O="VeriSign, Inc.", C=US

Issuer: OU=Class 4 Public Primary Certification Authority, O="VeriSign, Inc.", C=US

Owner: OU=www.verisign.com/CPS Incorp.by Ref. LIABILITY LTD.(c)97 VeriSign, OU=VeriSign

International Server CA - Class 3, OU="VeriSign, Inc.", O=VeriSign Trust Network

Issuer: OU=Class 3 Public Primary Certification Authority, O="VeriSign, Inc.", C=US
102 Appendix D: Supported Root Certificate Authorities
(c) 2008 Intuit Inc. All rights reserved.

	QuickBooks® Merchant Service SDK
	Developer’s Guide for QuickBooks Merchant Service
	Version 3.0 (April 2008)
	About This Guide
	Who Should Read This Guide
	Before You Begin
	Terminology
	What’s New in This Guide?
	Components of the QBMS SDK
	Technical Requirements

	Introduction
	Where to Find More Information
	What is the QBMS SDK?
	How Does QBMS Work with QuickBooks?
	QBMS and QuickBooks Online

	What Do I Need to Do to Integrate with QBMS?
	What is a Security Model and How Do I Choose One?
	The Desktop Security Model
	Using Desktop Security with Applications Accessible via Internet

	The Hosted Security Model

	Registering Your Application
	Communicating with QBMS
	More About the Connection Ticket Task
	More About the Certificates Task
	Parsing the qbmsXML Response

	What Am I Legally Required to do to Protect Financial Data?
	What Do My Merchant/Customers Need?
	The Merchant’s QBMS Account Must be Set Up for eCommerce
	Supported QuickBooks and qbXML Versions

	Accessing Remote QuickBooks from QBMS Web Applications
	Integrating a QBMS Application with QuickBooks Point of Sale
	Where to Go for the Latest QBMS/qbmsXML Information

	Fraud Prevention Features
	How Do Developers Use the Fraud Prevention Features?
	Fraud Prevention Preference Settings
	Notes on Using AVS Features

	Running Credit Card Transactions
	What is the QBMS API?
	Where Can I Find the Full Syntax Details on the QBMS API?
	Sending Multiple Transaction Requests in a Single POST
	Notes on Running Transactions
	Card Swipe and Card Present Transactions
	Format of Track2Data

	Credit Card Authorizations
	Credit Card Capture
	Credit Card Charge
	Credit Card Refunds
	CustomerCreditCardTxnVoidOrRefund
	CustomerCreditCardRefund

	Credit Card Voids
	Credit Card Voice Authorizations
	Using Track2Data in Voice Auth

	Merchant Account Queries
	Lodging Transactions
	Restaurant Transactions
	Merchant-Initiated Batch Close Transactions

	Supporting QuickBooks Reconcile
	What is the Reconcile Feature and Why is it Needed?
	How Do the QBMS and QB SDKs Support the Reconcile Feature?
	Saving the Transaction Data Into QuickBooks
	Make Sure the CustomerRef and PaymentRef Match the Transaction
	Where to Find the Transaction Data You Need
	Sample qbXML

	Signing Up for a PTC Test QBMS Merchant Account
	Signing Up For a PTC Test Account
	Accessing Your Test Account with QuickBooks (Optional)
	Restoring QuickBooks to Point to the Live QBMS Environment

	Testing Credit Card Transactions
	Testing Credit Card Transactions
	Testing Track2 Data
	Testing CustomerCreditCardTxnVoid
	Testing With QuickBooks
	Testing and Diagnosing Web Apps

	Error Handling
	Types of Errors Your Application Must Handle
	QBMS Connection-Related Errors
	QBMS and Card Processor Errors
	QBMS Error Recovery

	Accessing QBMS from Desktop Applications
	Before You Start
	Registration with Intuit Gateways is Required for Access
	Security Rules For Your Application
	Accessing QBMS: What You Need to Do
	Posting qbmsXML to QBMS (No Session Authentication)
	What Your qbmsXML Containing SignonDesktopRq Looks Like
	What Your Transaction Requests Look Like
	How Do You POST the qbmsXML to Production QBMS?
	Wait! How Do I POST to the PTC Test Environment?

	Sending the User to Get a Connection Ticket
	Getting a Connection Ticket from the PTC Enviroment
	Detecting/Handling Invalid Connection Tickets

	Posting qbmsXML to QBMS with Session Authentication
	Sending User to Get Intermediate Session Ticket
	Transforming the Intermediate (User-Pasted) Session Ticket
	Using the Transformed Session Ticket in Your qbmsXML

	URLs Used to Access QBMS from Desktop Applications
	The SignonDesktop and SignonTicket Request Definitions
	Using wincrypt to Store Connection Tickets

	Accessing QBMS From Hosted Web Applications
	Task Checklist
	Obtaining a QBMS Account
	Registration with Intuit Gateways is Required for Access
	Hosted Applications Need Certificates to Access Intuit Gateways
	Security Requirements
	How to Present the Client Certificate to QBMS
	An ASP.NET Example
	A Java Example: Presenting a Client Certificate in a Java Servlet

	How to Implement Connection Ticket Support
	Sending the Merchant to QBMS to Create a Connection Ticket
	Handling the Connection Ticket POST from QBMS

	Getting a Session Ticket for Use in QBMS Transaction POSTs
	Posting QBMS Transactions to the Data Exchange URL
	URLs Used to Access QBMS from Hosted Applications

	SUPPORTING YOUR CUSTOMER/Merchant
	Customers With Existing QBMS Accounts

	Status Codes Returned in Responses
	Signon Requests and Responses XML
	SignonDesktopRq
	SignonDesktopRs
	SignonTicketRq

	The QBMSLib Convenience Library
	Structure
	Reference
	Interfaces
	Enumerations
	Classes

	RequestSender Interface

	Supported Root Certificate Authorities

