F:.' First Data. \\\\

First Data Global Gateway
Integration Guide
Web Service API

Version 1.7.2

First Data Global Gateway

WEB SERVICE API INTEGRATION GUIDE
VERSION 1.7

Contents
L INEFOTUCTION Lottt 4
2 REQUITE DALA......ciiiiiiiiiiiiiii e 5
3 HOW the APT WOTKS ... e e e ettt e e e e e e e e e et a e e e e e e e eeneannns 6
O ¥ T oY o Lo (= To R o Yo =P 8
5 Sending Transactions t0 the GAatEWaAYccciiveiiiiiiiiii e e e e 9
6 Building Transactions iN XMLccoooiiiiiiiii et e e e e aaas 11
6.1 Credit Card TranSaCHONS.ccii e 11
B.1. 1 SAlE.. i 11
B.1.2 PreAUtN ... 14
B.1.3 POSIAULN . 16
0 R e o ot o] (] 17
B.0.5 REUUIM et et e e e e et a et a et aaaes 19
B.1.6 Credil .o 20
B.1.7 VOI. i 22
(A O o T= o I = T 1= Vo1 22
B.2.1 SAlE .. 23
B.2.2 REBUUIM ettt e e ettt e e et et e et et e e e e et e e e et e e eana e aaee 25
B.2.3 VOId...ciiiciicccccn 26
6.3 Calculating ShippiNg AN TaXccooeeeeeeeeee e 26
6.3.1 Calculate ShiPPING ...cioceeiiieeiee e e e e e 27
R T O Y (o1 U | = (= 1= GO 27
7 Additional Web ServiCe ACHIONSocouiiiiii e e e e e e e e aaeens 29
7.1 ReCUrriNg PaYMENTSccoiiiiiiiiiiiie e 29
7.1.1 Install RECUITiNg PAYMENTuuuiiiiiieiieiiieee e e e 29
7.1.2 Modify Recurring PayMeENtcoooei i 31
7.1.3 Cancel RecUrring PayMeENt...........ccooiiiiiiiiiii e 32
7.2 SYSIEMCNECK ... e 33
8 XML Tag REefEIENCE ..o 34
S R O (=T [(O (o I Y o[PP 34
ST O (=T 1 (O o | B - | - TR 34
SRS B O (=T [(O T o 1] B STt U = R 35
8.4 PAYIMEBNT. .. et a e 36
8.5 TranSaClioONDETaAIIS. ... 36
S 20T = 1111 o R 38
BT S PPN 38
8.8 Tl O N CK T X Ty P oot 39
8.9 TeleCheCKDALAcc.uuniiiiieee e 39
8.10 CalCUIAIE S NIPPING e 40
T B R OF= 1 (o1 =1 (= - D QPSP PSP R UPPPPR 40
o T 2 o= Yot U Vo = 1Y 1= o | 41

9 Building a SOAP ReQUESEt MESSAJEceiiiiiiiiiiiiiiiieieeeeeeeee ettt 42

10 Reading the SOAP RESPONSE MESSAJEuuuuuuuuiiniiiiiiiiiiiiiiiiiiiiiiiiibiebnenbneebbennnnnenaeennnnes 43
10.1 SOAP RESPONSE MESSAGE i ieeeeiieenriiire e e e eeeeeeetar e e e e e eeeent s e e e e e e eennrrna e e eeeeeennnes 43
L0.1.1 TFANSACTION ...ttt 43
L0.0.2 ACTION ..ttt 44
10.2 SOAP FAUIt MESSAQEceiiiiiiiiiiiiiiiiiiiieet ettt ettt ettt e e e e e e e e eeees 45
10.2.1 SOAP-ENVISEIVE ...ttt ettt e a e e aaabas 46
10.2.2 SOAP-ENVCHENT ...ttt bsbsssssbseennees 46

11 Analyzing the TranSaction RESPONSEuuuuuuiiiiiiiiiiiiiiiiiiii e neeenenees 48
11,1 APPrOVAl RESPONSEceiiiiiiiiiiiiiiiiiieiet ettt ettt ettt et eeeeeees 48
11.2 FalUr RESPONSE ...ttt e et e e e e e e e e e ettt a s e e e e e e eeasttaasaeeaaeaennnes 50
12 Building an HTTPS POST REQUEST.......uuuuiuiiiiiiiiiiiiiiiiiiiiiiiiii e 53
0 R o o | TP PPPPPPTPP 54
12.1.1 Using the CURL PHP EXIENSIONcciiiiiiiiiiiiiee et e e 54
12.1.2 Using the cURL Command LiNe TOOIuuiiiiiiiiiiiicie e 55
i NS | TP TP PPRTPRPP 55
13 Establishing an SSL CONNECLIONu.ciiii i 57
G T R o o | PP PP PP PPPPPPR PPN 57
13.1.1 Using the PHP CURL EXIENSIONccvviiiiiiiiiiiciiiiin i 57
13.1.2 Using the cURL Command Line TOOIuuuuummmmmmiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiieieieeees 58

L3 2 AP e e e e 58
14 Sending the HTTPS POST Request and Receiving the Response...........cccccvvvvvvinnnnnes 59
I o TP PPPPPRPP 59
14.1.1 Using the PHP CURL EXIENSIONcoiiiiiiiiiiiiiiee et 59
14.1.2 Using the cURL Command LiNe TOOIuuiiiiiiiiiiiicie e 59
LA, 2 AP ettt e e e et et e e e e an s 60
15 USING NET FrameEWOTKuueiiiiiiiiiiiiiiiiiii s 61
15,1 PrerEQUISITES ..oovituiii i e e et e e e e e e e et e e e e e e e e e e ettt e e e eeaeeessssbaaaaeeaeeeeennes 61
15.2 Creating Web Service Reference Classes in .NETccoovvviiiiiiiiiiiiiiiiiiiiiiiiiiieeee 62
15.3 Writing the .NET CHENT.....cciviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 65
16 USING @ JaVa FrameEWOTK.......cooiiiiiiiiiee e e e e e e e et e e e e e e e e e e e e e e e 68
16.1 AXIS FramMeEWOIK........coiuiiiiiiiiiiiiii i 68
16.1.1 Client Certificate CONfIQUIAtiONuuuuuueiiiiiiiiiiiiiiiiiii e 68
16.1.2 Generating ClIent STUDSoooiiiiiiii e e 68
16.1.3 Writing the AXIS CHENLcc i 69
16.1.4 SSL and HTTP AUtNENTICALION.........uuuiiiiiiiiiiiiiiiiiiiiii e 71
16.2 SPring WED SEIVICESooviiiiiiiiiiiiiiiiiieeeeeee ettt 71
16.2.1 Client CoNfIQUIALION.......oii i e et e e e e e e e eeaeaes 71
16.2.2 Writing the SPring CHENT..........uuiiiiiiii e 73
16.2.3 SSL/Certificate CONFIGUIATIONuuuuuiiiiiiiiiiiiiiiiiiii bbb eeeeeaeenee 78

17 Customer Test ENVIironment (CTE)oooiiiiiiiiiiii e 79
18 TrOUDIESNOOTING ..ttt 84
18.1 Merchant EXCEPLIONSooiiiiiiii ettt e e e e e ettt e e e e e e e e eeeeean e e e e eeeeeennees 84
18.2 CURL LOQIN ErTOr MESSAUESeevviiiiiiiiiiiiiiiiiiiiiieieeeeeee ettt ettt ettt ettt e e e e e e e eeees 89
18.3 Java Client Login Error MESSAQESccuvviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt 90
19 Installing the Client CertifiCate ..o e e 91

1 Introduction

The First Data Global Gateway Web Service APl is an Application Programming Interface, which
allows you to connect your application with the First Data Global Gateway. Using the Web
Service API, you can seamlessly accept credit card and check payments in your application.

Note: If you store or process cardholder data with your application, you must ensure that, your
application meets the Payment Card Industry Data Security Standard (PCI DSS) requirements.
Depending on transaction volume, you may be required to have your application audited by a
Qualified Security Assessor.

The First Data Global Gateway Web Service APl is a SOAP-based web service. Some of the
advantages of offering integration using a web service include:

Platform independence — Any application that can send and receive SOAP messages
can communicate with the Web Service API. Because the Web Service API is built using
open standards, you can choose any technology that suits your needs (e.g. J2EE, .NET,
PHP, ASP, etc.) for integrating with the First Data Global Gateway.

Ease of integration — Communicating with a web service is simple. Your application
builds a SOAP request message encoding your transaction, sends it via HTTPS to the
web service, and waits for a SOAP response message, which contains your transaction’s
status. Since SOAP and HTTPS are designed to be lightweight protocols, building
requests and parsing responses is a straightforward. Furthermore, rarely do you have to
do this manually, since there are a number of libraries available in almost every
technology. In general, building a SOAP request and handling the response is reduced to
a few lines of code.

Security — All communication between your application and First Data Global Gateway
Web Service APl is SSL-encrypted. Your application has a client certificate, which
identifies it uniquely with the web service. The Web Service API holds a server certificate,
which your application checks to ensure that it is communicating with the Web Service
API. The Web Service also requires HTTP basic authorization (user name and password)
in order to communicate with the web service. These security mechanisms guarantee
that the transaction data sent to First Data Global Gateway Web Service API stays
private and is available only to your application.

This document will assist you in integrating your application with the Web Service API, and
provide you with a brief summary of the Web Service API solution feature set.

2 Required Data

This section describes the data required for communicating securely with the Web Service API.
The following checklist provides an overview enabling you to ensure that you have received the
whole set when registering your application for the First Data Global Gateway:

Store ID — Your store ID, assigned by First Data.

User ID and Password — The user ID and password required for basic authorization with
the Web Service API. The user ID is in the format WS<store_ID>. _.1. For example, if
your store ID is 111920, your user ID is WS111920._.1. This information is in the.
WS<store_ID>._.1.auth.txt file.

Client Certificate p12 File — The client certificate stored in a p12 file, named in the
format WS<store_ID>._.1.p12. For example, if your store ID is 111920, your p12 file is
named WS111920._.1.p12. This file is used for authenticating the client with the First
Data Global Gateway. For connecting with Java, you need a ks file, for example
WS111920._.1.ks.

Client Certificate Installation Password — The password required for installing the p12
client certificate file. This information is in the WS<store_ID>. .1.p12.pw.txt file.

Client Certificate Private Key — The private key of the client certificate stored in a key
file, named in the format WS<store_ID>.key. Depending on your choice of tools, this may
be required for authenticating with the Web Service API.

Client Certificate Private Key Password — The password required for the private key,
named in the format ckp_<creation_timestamp>. For example, this might be
ckp_1193927132. Depending on your choice of tools, this may be required for
authenticating with the Web Service API. This information is in the

WS<store_ID>. .1.key.pw.txt file.

Client Certificate PEM File — The client certificate stored in a pem file, named in the
format WS<store_ID>._.1.pem. For example, if your store ID is 111920, your pem file is
named WS111920._.1.pem. This file is used for authenticating the client with the First
Data Global Gateway. Depending on your choice of tools, this may be required for
authenticating with the Web Service API instead of the p12 file.

Note: These files are delivered in the .tar.gz format, which can be opened using recent versions
of WinZip or most other archive applications.

3 How the APl Works

The following section describes the process of performing a credit card transaction through the
Web Service API.

In most cases, a customer starts the overall communication process by buying goods or services
with her credit card in your online store. Your store sends a credit card transaction to the First
Data Global Gateway using the Web Service API. Having received the transaction, the First Data
Global Gateway forwards it to the credit card processor for authorization. Based on the result,
your online store receives an approval or an error response from the Web Service API. This
means that you only need to be able to communicate with the First Data Global Gateway Web
Service API in order to accept payments.

Perform
Purchase Transaction Process
\
— —— —
Send Send Send
Result Page Result FDGG Web Approval/
Customer Online Store Service API Failure Credit Card Processor

Web service interfaces are designed using the Web Service Definition Language (WSDL). The
WSDL file for the Web Service API is located here:

https://ws.firstdataglobalgateway.com/fdggwsapi/services/order.wsdl

You must install the client certificate to access the WSDL file, for example, in a web browser.
See 21 Installing the Client Certificate on page 91 for instructions on installing the client
certificate.

After installing the client certificate, you can access the WSDL file. To access the WSDL file,
follow these steps:

1. Open a Microsoft Internet Explorer window and enter the URL for the WSDL in the
Address field.

2. After requesting the URL, the server will ask your browser to supply the client certificate
ensure sure that it is talking to your application correctly. Since you have installed the
certificate in the previous steps, you are seamlessly transferred to the server. Then, the
First Data Global Gateway Web Service API sends its server certificate and the browser
verifies that it comes from a trusted source. Again, this is done automatically without
prompting you for any input. A secure connection is established and all data transferred
between your application and the First Data APl Web Service is SSL-encrypted.

3. The Web Service API WSDL file is displayed.

Note: Your user ID and password are not required to view the WSDL but they are required to
access the First Data Global Gateway Web Service API.

https://ws.firstdataglobalgateway.com/

The WSDL file defines the operations offered by the Web Service API, their request and
response parameters, and how to call the operations. The First Data Global Gateway Web
Service API WSDL file defines one operation, FDGGWSApiOrder, called by sending a SOAP
request to the following URL.:

https://ws.firstdataglobalgateway.com/fdggwsapi/services

This operation takes an XML-encoded transaction as a request and returns an XML-encoded
response.

Depending on the tools you use to integrate with the Web Service API, you may need to provide
the URL for the WSDL file. If so, you must tell your tool that the communication is SSL-enabled,
provide your client certificate, and accept the server certificate as trusted. The process for this
depends upon your tool. Consult the documentation for your tool for details.

The following chapters will guide you in setting up your store for building and performing custom
credit card transactions.

4 Supported Tools

The First Data Global Gateway Web Service APl uses HTTPS and SOAP to communicate with
your applications. As such, it is completely platform independent. The choice of languages,
frameworks, or tools to integrate with the Web Service APl is up to you.

First Data has tested the Web Service API with the following tools:

PHP 5.2.9

ASP

.NET Framework
Axis Framework 2-1.3
Spring-WS 1.5.7

While you can use any tools to integrate with the API, these are the tools First Data has tested.
Integrating with the First Data Global Gateway Web Service API using other tools is outside the
scope of this document.

5 Sending Transactions to the Gateway

This section describes the basic steps to take place when sending transactions to the First Data
Global Gateway.

The customer initiates checkout in the online store.

The online store displays a form asking the customer to provide a credit card number and
the expiration date.

The customer enters and submits the data.

The online store receives the data and builds an XML document encoding a Sale
transaction, which includes the data provided by the customer and the total amount to be
paid by the customer.

After building the XML Sale transaction, the online store wraps it in a SOAP message,
which describes the Web Service operation to be called with the transaction XML being
passed as a parameter.

The online store generates an HTTP POST request containing the soap message and
sets the HTTP basic authorization headers.

The online store establishes an SSL connection by providing the client and server
certificate.

The online store sends the HTTP POST request to the First Data Global Gateway Web
Service APl and waits for an HTTP response.

The Web Service API receives the HTTPS request and parses out the authorization
information provided by the store in the HTTP headers.

Having authorized the store, the Web Service API parses the SOAP message contained
in the HTTP request body, triggering the call to the transaction operation.

The First Data Global Gateway Web Service API performs the transaction processing,
builds an XML response document, wraps it in a SOAP message, and sends this SOAP
message back to the client in the body of an HTTP response.

The online store receives the HTTP response.

Depending on the data contained in the XML response document, the online store
displays the approval or error message.

While this example describes the case of a Sale transaction, other transactions follow the same
process.

Your application performs the following steps in order to submit transactions and analyze the

result;

Build an XML document encoding your transactions.
Wrap that XML document in a SOAP request message.

Build an HTTP POST request with the information identifying your store provided in the
HTTP header and the SOAP request message in the body.

Establish an SSL connection between your application and First Data Global Gateway
Web Service API.

Send the HTTP POST request to the First Data Global Gateway Web Service API and
receive the response.

Read the SOAP response message out of the HTTPS response body.
Analyze the XML response document contained in the SOAP response message.

The following chapters describe the information you need to perform these steps in detail and
guide you through the process of setting up your application to perform transactions.

10

6 Building Transactions in XML

This chapter describes the XML formats for the submitting to the First Data Global Gateway Web
Service API. After encoding the transaction in XML, the message is wrapped in SOAP envelope
and submitted to the Web Service API.

While the tools you use to generate your request messages may allow you to avoid working with
raw XML, you still need a basic understanding of the XML format in order to correctly build the
XML transactions.

Credit card and check transactions are contained in the fdggwsapi:FDGGWSApiOrderRequest
element.

Note: The First Data Global Gateway Web Service API only accepts ASCII characters. The
Order ID field should not contain the following characters: & % /.

6.1 Credit Card Transactions

Regardless of the transaction type, the basic XML document structure of a credit card
transaction is as follows:

<fdggwsapi : FDGGWSApiOrderRequest
xmlns:vl=
“http://secure.linkpt.net/fdggwsapi/schemas us/v1”
xmlns: fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<vl:Transaction>
<vl:CreditCardTxType>...</vl:CreditCardIxType>
<vl:CreditCardData>...</vl:CreditCardData>
<vl:Payment>...</vl:Payment>
<vl:TransactionDetails>...</vl:TransactionDetails>
<vl:Billing>...</v1:Billing>
<vl:Shipping>...</vl:Shipping>
</vl:Transaction>
</fdggwsapi : FDGGWSApiOrderRequest>

The element CreditCardDataTXType is mandatory for all credit card transactions. The other
elements depend on the transaction type. The content depends on the type of transaction.

See 8 XML Tag Reference on page 34 for details of all required and optional elements valid for
submission for credit card transactions.

6.1.1 Sale

The following code is a sample of a Sale transaction using the minimum required elements:

<fdggwsapi : FDGGWSApiOrderRequest

xmlns:vl=
"http://secure.linkpt.net/fdggwsapi/schemas us/v1”

xmlns: fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">

11

<vl:Transaction>
<vl:CreditCardTxType>
<vl:Type>sale</vl:Type>
</vl:CreditCardTxType>
<vl:CreditCardData>
<vl:CardNumber>4111111111111111</v1:CardNumber>
<vl:ExpMonth>12</v1:ExpMonth>
<vl:ExpYear>12</vl:ExpYear>
</vl:CreditCardData>
<vl:Payment>
<vl:ChargeTotal>19.95</vl:ChargeTotal>
</v1l:Payment>
</vl:Transaction>
</fdggwsapi : FDGGWSApiOrderRequest>

The following table lists the required and optional fields for the Sale transaction. (v1:Billing and
v1:Shipping are optional)

Several situations that may occur which may cause a merchant’s transactions to be
downgraded.

1. Failureto input the required data filed elements

2. Swiping a credit card in a designated CNP environment

3. Failure to input data the Tax and PO# field

All paths are relative to fdggwsapi:FDGGW SApiOrderRequest/vl:Transaction.

FIELD REQUIRED

v1.CreditCardTxType/

v1:Type Required
v1:.CreditCardData/

v1l:CardNumber Required if vl:TrackData is not submitted.

v1:ExpMonth Required if vl:TrackData is not submitted.

v1:ExpYear Required if v1:TrackData is not submitted.

v1:CardCodeValue Optional

v1:CardCodelndicator Optional

vl:TrackData Required if vl:CardNumber is not submitted.
v1:CreditCard3DSecure/

vl:PayerSecurityLevel Required for 3D Secure transactions.

v1:AuthenticationValue See 8.3 CreditCard3DSecure for details.

v1:XID See 8.3 CreditCard3DSecure for details.
v1l:Payment/

v1:ChargeTotal Required

v1:SubTotal Optional

12

FIELD REQUIRED

v1:VATTax Optional
v1:Shipping Optional
v1:TransactionDetails/
v1:UserlD Optional
v1:InvoiceNumber Optional
v1:Orderld Optional
v1l:p Optional
v1l:ReferenceNumber Optional
v1:TDate Optional
v1:Recurring Optional
v1l:TaxExempt Optional
vl:TerminalType Optional
v1:TransactionOrigin Optional, default value if not provided
v1:PONumber Optional
vL:Billing/ for I MOTO & £ trangactionl o SRR S EUTES
v1:CustomerlD Optional
v1l:Name MOTO & ECI: Required Retail: Optional
v1l:Company Optional
v1:Addressl MOTO & ECI: Required Retail: Optional
v1:Address2 Optional
v1:City MOTO & ECI: Required Retail: Optional
vl1:State MOTO & ECI: Required Retail: Optional
v1:Zip Code MOTO & ECI: Required Retail: Optional
v1:Country MOTO & ECI: Required Retail: Optional
v1:Phone Optional
vl:Fax Optional
v1:Email Optional: Butis required to have receipts emailed to customer and
administrator
v1:Shipping/
v1:Type Optional
vl:Name Optional
v1:Addressl Optional
v1:Address2 Optional

13

FIELD REQUIRED
v1:City Optional
v1:State Optional
v1:Zip Optional
v1:Country Optional

These elements must be submitted in the order defined in the XSD file: Transaction,
CreditCardTxType, CreditCardData, and Payment.

6.1.2 PreAuth

The following code is a sample of a PreAuth transaction using the minimum required elements:

<fdggwsapi : FDGGWSApiOrderRequest

xmlns:vl=

“http://secure.linkpt.net/fdggwsapi/schemas us/vl1”

xmlns: fdggwsapi=

“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">

<vl:Transaction>

<vl:CreditCardTxType>

<vl:Type>preAuth</vl:Type>

</v1l:CreditCardTxType>
<vl:CreditCardData>

<vl:CardNumber>4111111111111111</v1:CardNumber>
<vl:ExpMonth>12</v1:ExpMonth>
<vl:ExpYear>12</vl:ExpYear>

</vl:CreditCardData>

<vl:Payment>

<vl:ChargeTotal>100.00</v1:ChargeTotal>

</vl:Payment>
</vl:Transaction>

</fdggwsapi : FDGGWSApiOrderRequest>

The following table lists the required and optional fields for the PreAuth transaction. All paths are
relative to fdggwsapi:FDGGWSApiOrderRequest/vl:Transaction.

FIELD

REQUIRED

v1:CreditCardTxType/

v1:Type

Required

v1:CreditCardData/

v1l:CardNumber

Required if v1:TrackData is not submitted.

v1:ExpMonth

Required if vl:TrackData is not submitted.

v1:ExpYear

Required if vl:TrackData is not submitted.

v1:CardCodelndicator

Optional

vl:CardCodeValue

Optional

14

FIELD

REQUIRED

vl:TrackData

Required if vl:CardNumber is not submitted.

v1:CreditCard3DSecure/

v1:PayerSecurityLevel

Required for 3D Secure transactions

vl1:AuthenticationValue

See 8.3 CreditCard3DSecure for details

v1:XID See 8.3 CreditCard3DSecure for details
v1l:Payment/
v1l:ChargeTotal Required
v1:SubTotal Optional
v1:VATTax Optional
v1:Shipping Optional
vl:TransactionDetails/
v1:UserlD Optional
v1:InvoiceNumber Optional
v1:Orderld Optional
vl:p Optional
v1l:ReferenceNumber Optional
v1:TDate Optional
v1:Recurring Optional
v1:TaxExempt Optional
v1l:TerminalType Optional

v1:TransactionOrigin

Optional, default value if not provided.

v1:PONumber

Optional

vL:Billing/ fo A MOTO & EC1 ransactonst o oS e

v1:CustomerlD Optional

v1l:Name MOTO & ECI: Required Retail: Optional
vl:Company Optional

v1:Addressl MOTO & ECI: Required Retail: Optional
v1:Address2 Optional

v1:City MOTO & ECI: Required Retail: Optional
vl1:State MOTO & ECI: Required Retail: Optional
v1:Zip MOTO & ECI: Required Retail: Optional
v1:Country MOTO & ECI: Required Retail: Optional

15

FIELD REQUIRED
v1:Phone Optional
v1l:Fax Optional
v1:Email Optional: But is required to have receipts emailed to customer and
administrator
v1:Shipping/
v1:Type Optional
v1l: Name Optional
v1:Addressl Optional
v1:Address2 Optional
v1:City Optional
v1:State Optional
v1:Zip Optional
v1:Country Optional

6.1.3 PostAuth

The following code is a sample of a PostAuth transaction using the minimum required elements:

<fdggwsapi : FDGGWSApiOrderRequest
xmlns:vl=

"http://secure.linkpt.net/fdggwsapi/schemas us/v1”

xmlns: fdggwsapi=

“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">

<vl:Transaction>
<vl:CreditCardTxType>

<vl:Type>postAuth</vl:Type>

</vl:CreditCardTxType>
<vl:Payment>

<vl:ChargeTotal>59.45</vl:ChargeTotal>

</vl:Payment>
<vl:TransactionDetails>
<vl:0rderId>

703d2723-9906-4559-8c6d-797488e8977

</v1:0rderId>
</vl:TransactionDetails>
</vl:Transaction>

</fdggwsapi : FDGGWSApiOrderRequest>

The following table lists the required and optional fields for the PostAuth transaction. All paths

are relative to fdggwsapi:FDGGWSApiOrderRequest/vl:Transaction.

FIELD

REQUIRED

v1:CreditCardTxType/

16

FIELD REQUIRED
v1:Type Required
v1l:Payment/
v1l:ChargeTotal Optional
v1:TransactionDetails/
v1:Orderld Required

6.1.4 ForceTicket

The following code is a sample of a ForceTicket transaction using the minimum required

elements:

<fdggwsapi : FDGGWSApiOrderRequest

xmlns:vl=

"http://secure.linkpt.net/fdggwsapi/schemas us/v1”
xmlns: fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">

<vl:Transaction>
<vl:CreditCardTxType>

<vl:Type>forceTicket</vl:Type>

</v1l:CreditCardTxType>
<vl:CreditCardData>

<vl:CardNumber>4111111111111111</v1:CardNumber>
<vl:ExpMonth>12</v1:ExpMonth>
<vl:ExpYear>12</vl:ExpYear>

</vl:CreditCardData>
<vl:Payment>

<vl:ChargeTotal>59.45</vl:ChargeTotal>

</vl:Payment>
<vl:TransactionDetails>

<vl:ReferenceNumber>123456</vl:ReferenceNumber>

</vl:TransactionDetails>
</vl:Transaction>

</fdggwsapi : FDGGWSApiOrderRequest>

The following table lists the required and optional fields for the ForceTicket transaction. All paths
are relative to fdggwsapi:FDGGWSApiOrderRequest/vl:Transaction.

FIELD

REQUIRED

v1:.CreditCardTxType/

v1:Type

Required

vl1:CreditCardData/

v1l:CardNumber

Required if vl:TrackData is not submitted.

v1:ExpMonth

Required if v1:TrackData is not submitted.

v1:ExpYear

Required if v1:TrackData is not submitted.

17

FIELD REQUIRED
v1:CardCodeValue Optional
v1:CardCodelndicator Optional

vl:TrackData

Required if vl:CardNumber is not submitted.

v1:CreditCard3DSecure/

vl:PayerSecurityLevel

Required for 3D Secure transactions

vl1:AuthenticationValue

See 8.3 CreditCard3DSecure for details

v1:XID See 8.3 CreditCard3DSecure for details
v1l:Payment/
vl:ChargeTotal Required
v1:SubTotal Optional
v1:VATTax Optional
v1:Shipping Optional
vl:TransactionDetails/
v1:UserlD Optional
v1:InvoiceNumber Optional
v1:Orderld Optional
v1l:p Optional
v1l:ReferenceNumber Required
v1.TDate Optional
vL:Billing/ for I VMOTO & £ trangactionsl o o (AR S EUTES
v1:CustomerlD Optional
v1l:Name MOTO & ECI: Required Retail: Optional
v1l:Company Optional
v1:Addressl MOTO & ECI: Required Retail: Optional
v1:Address2 Optional

v1:City MOTO & ECI: Required Retail: Optional

vl1:State MOTO & ECI: Required Retail: Optional

v1:Zip MOTO & ECI: Required Retail: Optional
v1:Country MOTO & ECI: Required Retail: Optional
v1:Phone Optional

v1:Fax Optional

v1:Email Optional: But is required to have receipts emailed to customer and

administrator

18

FIELD REQUIRED
v1:Shipping/

v1:Type Optional
vl:Name Optional
v1:Addressl Optional
v1:Address2 Optional
v1:City Optional
v1:State Optional
v1:Zip Optional
v1:Country Optional
v1:Phone Optional
v1l:Fax Optional
v1:Email Optional
6.1.5 Return

The following code is a sample of a Return transaction using the minimum required elements:

<fdggwsapi : FDGGWSApiOrderRequest
xmlns:vl=
“http://secure.linkpt.net/fdggwsapi/schemas us/vl1”
xmlns: fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<vl:Transaction>
<vl:CreditCardTxType>
<vl:Type>return</vl:Type>
</vl:CreditCardTxType>
<vl:Payment>
<vl:ChargeTotal>19.95</v1:ChargeTotal>
</vl:Payment>
<vl:TransactionDetails>
<vl:0rderId>
62e3b5df-2911-4e89-8356-1e49302b1807
</v1:0rderId>
</vl:TransactionDetails>
</vl:Transaction>
</fdggwsapi : FDGGWSApiOrderRequest>

The following table lists the required fields for the Return transaction. All paths are relative to
fdggwsapi:FDGGWSApiOrderRequest/vl:Transaction.

FIELD REQUIRED

v1:CreditCardTxType/

v1:Type Required

FIELD REQUIRED
v1l:Payment/
v1l:ChargeTotal Required
v1:TransactionDetails/
v1:Orderld Required
6.1.6 Credit

The following code is a sample of a Credit transaction using the minimum required elements:

<fdggwsapi : FDGGWSApiOrderRequest
xmlns:vl=

“http://secure.linkpt.net/fdggwsapi/schemas us/v1”

xmlns: fdggwsapi=

“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">

<vl:Transaction>
<vl:CreditCardTxType>

<vl:Type>credit</vl:Type>

</vl:CreditCardTxType>
<vl:CreditCardData>

<vl:CardNumber>4111111111111111</v1:CardNumber>
<vl:ExpMonth>12</v1:ExpMonth>
<vl:ExpYear>12</vl:ExpYear>

</vl:CreditCardData>
<vl:Payment>

<vl:ChargeTotal>50.00</v1:ChargeTotal>

</v1l:Payment>
</vl:Transaction>

</fdggwsapi : FDGGWSApiOrderRequest>

The following table lists the required and optional fields for the Credit transaction. All paths are
relative to fdggwsapi:FDGGWSApiOrderRequest/vl:Transaction.

FIELD

REQUIRED

v1:.CreditCardTxType/

v1:Type

Required

v1:CreditCardData/

v1:CardNumber

Required if vl:TrackData is not submitted.

v1:ExpMonth

Required if v1:TrackData is not submitted.

v1:ExpYear Required if v1:TrackData is not submitted.
v1:CardCodeValue Optional
v1:CardCodelndicator Optional

vl:TrackData

Required if vi:CardNumber is not submitted

v1:CreditCard3DSecure/

20

FIELD

REQUIRED

vl:PayerSecurityLevel

Required for 3D Secure transactions

v1:AuthenticationValue

See 8.3 CreditCard3DSecure for details

v1:XID See 8.3 CreditCard3DSecure for details
v1l:Payment/
vl:ChargeTotal Required
v1:SubTotal Optional
v1:VATTax Optional
v1:Shipping Optional
vl:TransactionDetails/
v1:UserlD Optional
v1:InvoiceNumber Optional
v1l:p Optional
VL:Billing/ o Bevent e possty of Sowrrading, o Bilng deta s e
v1:CustomerID Optional
v1l:Name MOTO & ECI: Required Retail: Optional
v1l:Company Optional
v1:Addressl MOTO & ECI: Required Retail: Optional
v1:Address2 Optional
v1:City MOTO & ECI: Required Retail: Optional
v1:State MOTO & ECI: Required Retail: Optional
v1:Zip MOTO & ECI: Required Retail: Optional
v1:Country MOTO & ECI: Required Retail: Optional
v1:Phone Optional
v1:Fax Optional
v1:Email Optional: But s required to have receipts emailed to customer and
administrator
v1:Shipping/
v1:Type Optional
v1l:Name Optional
v1:Addressl Optional
v1:Address2 Optional
v1:City Optional
v1:State Optional

21

FIELD REQUIRED
v1:Zip Optional
v1:Country Optional
v1:Phone Optional
v1:Fax Optional
v1:Email Optional
6.1.7 Void

The following code is a sample of a Void transaction using the minimum required elements:

<fdggwsapi : FDGGWSApiOrderRequest
xmlns:vl=
"http://secure.linkpt.net/fdggwsapi/schemas us/v1”
xmlns: fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<vl:Transaction>
<vl:CreditCardTxType>
<vl:Type>void</vl:Type>
</vl:CreditCardTxType>
<vl:TransactionDetails>
<vl:0rderId>
62e3b5df-2911-4e89-8356-1e49302b1807
</v1:0rderId>
<v1:TDate>1190244932</v1:TDate>
</vl:TransactionDetails>
</vl:Transaction>
</fdggwsapi : FDGGWSApiOrderRequest>

The following table lists the required and fields for the Void transaction. All paths are relative to
fdggwsapi:FDGGWSApiOrderRequest/vl:Transaction.

FIELD REQUIRED
v1:CreditCardTxType/
v1:Type Required
v1l:TransactionDetails/
v1:Orderld Required
v1:TDate Required

6.2 Check Transactions

Regardless of the transaction type, the basic XML document structure of a check transaction is
as follows:

<fdggwsapi : FDGGWSApiOrderRequest

22

xmlns:vl=
"http://secure.linkpt.net/fdggwsapi/schemas us/v1”
xmlns: fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<vl:Transaction>
<vl:TeleCheckTxType>...</vl:TeleCheckTxType>
<vl:TeleCheckData>...</vl:TeleCheckData>
<vl:Payment>...</vl:Payment>
<vl:TransactionDetails>...</vl:TransactionDetails>
<v1l:Billing>...</v1:Billing>
<v1l:Shipping>...</vl:Shipping>
</vl:Transaction>
</fdggwsapi : FDGGWSApiOrderRequest>

The element TeleCheckTXType is mandatory for all check transactions. The other elements
depend on the transaction type. The content depends on the type of transaction.

See 8 XML Tag Reference on page 34 for details of all required and optional elements
needed for submission for check transactions

6.2.1 Sale

The following code is a sample of a check Sale transaction using the minimum required
elements:

<fdggwsapi : FDGGWSApiOrderRequest
xmlns:vl=
"http://secure.linkpt.net/fdggwsapi/schemas us/v1”
xmlns: fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<vl:Transaction>
<vl:TeleCheckTxType>
<vl:Type>sale</vl:Type>
</v1l:TeleCheckTxType>
<vl:TeleCheckData>
<v1:CheckNumber>111</CheckNumber>
<vl:AccountType>pc</AccountType>
<vl:AccountNumber>1234567890</AccountNumber>
<vl:RoutingNumber>055001054</RoutingNumber>
<vl:DrivingLicenseNumber>U12345678</DrivingLicenseNumber>
<vl:DrivinglLicenseState>CA</DrivingLicenseState>
</v1l:TeleCheckData>
<vl:Payment>
<vl:ChargeTotal>19.95</vl:ChargeTotal>
</vl:Payment>
</vl:Transaction>
</fdggwsapi : FDGGWSApiOrderRequest>

The following table lists the required and optional fields for the Sale transaction. All paths are
relative to fdggwsapi:FDGGWSApiOrderRequest/v1:Transaction.

FIELD REQUIRED

v1:TeleCheckTxType/

FIELD REQUIRED
v1:Type Required
v1:TeleCheckData/
v1:CheckNumber Required
v1l:AccountType Required
v1:AccountNumber Required
v1:RoutingNumber Required
v1:DrivingLicenseNumber Required
v1:DrivingLicenseState Required
v1l:Payment/
v1:ChargeTotal Required
v1:SubTotal Optional
v1:VATTax Optional
v1:Shipping Optional
vl:TransactionDetails/
v1:UserlD Optional
v1:InvoiceNumber Optional
v1:Orderld Optional
vl:p Optional
v1:ReferenceNumber Optional
v1:TDate Optional
v1:Recurring Optional
v1l:TaxExempt Optional
vl:TerminalType Optional

v1:TransactionOrigin

Optional, default value if not provided

v1:PONumber

Optional

vl:BiIIing/ To prevent the possibility of QOwngrading, some Billing data is required
for all MOTO & ECI transactions!
v1:CustomerID Optional
vl:Name MOTO & ECI: Required Retail: Optional
v1l:Company Optional

v1l:Addressl

MOTO & ECI: Required Retail: Optional

v1l:Address?2

Optional

v1:City

MOTO & ECI: Required Retail: Optional

24

FIELD REQUIRED

v1:State MOTO & ECI: Required Retail: Optional

v1:Zip MOTO & ECI: Required Retail: Optional
v1:Country MOTO & ECI: Required Retail: Optional

v1l:Phone Optional

v1:Fax Optional

v1:Email Optional: Butis required to have receipts emailed to customer and

administrator

6.2.2 Return

The following code is a sample of a Check Return transaction using the minimum required
elements:

<fdggwsapi : FDGGWSApiOrderRequest
xmlns:vl=
"http://secure.linkpt.net/fdggwsapi/schemas us/v1”
xmlns: fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<vl:Transaction>
<vl:TeleCheckTxType>
<vl:Type>return</vl:Type>
</vl:TeleCheckTxType>
<vl:Payment>
<vl:ChargeTotal>19.95</vl:ChargeTotal>
</vl:Payment>
<vl:TransactionDetails>
<v1l:0rderId>
62e3b5df-2911-4e89-8356-1e49302b1807
</v1:0rderId>
</vl:TransactionDetails>
</vl:Transaction>
</fdggwsapi : FDGGWSApiOrderRequest>

The following table lists the required fields for the Return transaction. All paths are relative to
fdggwsapi:FDGGWSApiOrderRequest/vl:Transaction.

FIELD REQUIRED
v1:TeleCheckTxType/
v1:Type Required
v1l:Payment/
vl:ChargeTotal Required
v1l:TransactionDetails/
v1:Orderld Required

25

6.2.3 Void

The following code is a sample of a Check Void transaction using the minimum required

elements:

<fdggwsapi : FDGGWSApiOrderRequest

xmlns:vl=
“http://secure.linkpt.net/fdggwsapi/schemas us/vl1”
xmlns: fdggwsapi=

“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">

<vl:Transaction>
<vl: TeleCheckTxType>
<vl:Type>void</vl:Type>
</vl: TeleCheckTxType>
<vl:Payment>
<vl:ChargeTotal>19.95</vl:ChargeTotal>
</vl:Payment>
<vl:TransactionDetails>
<v1l:0rderId>
62e3b5df-2911-4e89-8356-1e49302b1807
</v1:0rderId>
</vl:TransactionDetails>
</vl:Transaction>
</fdggwsapi : FDGGWSApiOrderRequest>

The following table lists the required fields for the Void transaction. All paths are relative to

fdggwsapi:FDGGWSApiOrderRequest/vl:Transaction.

FIELD REQUIRED

v1:TeleCheckTxType/

v1:Type Required
v1l:Payment/

v1l:ChargeTotal Required
vl:TransactionDetails/

v1:Orderld Required

v1:TDate Required

6.3 Calculating Shipping and Tax

Regardless of the transaction type, the basic XML document structure of a tax or shipping

charge calculation is as follows:

<fdggwsapi : FDGGWSApiOrderRequest

xmlns:vl=
"http://secure.linkpt.net/fdggwsapi/schemas us/v1”
xmlns: fdggwsapi=

“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">

<vl:Transaction>
<vl:Calculate...>

</vl:Calculate...>
</vl:Transaction>
</fdggwsapi : FDGGWSApiOrderRequest>

See 8 XML Tag Reference on page 34 for details of all required and optional elements
needed for tax or shipping charge calculations

6.3.1 Calculate Shipping

The following code is a sample of a shipping charge calculation using the minimum required
elements:

<fdggwsapi : FDGGWSApiOrderRequest
xmlns:vl=
"http://secure.linkpt.net/fdggwsapi/schemas us/v1”
xmlns: fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<vl:Transaction>
<vl:CalculateShipping>
<vl:SubTotal>12.0</v1:SubTotal>
<vl:Weight>1.2000000476837158</v1l:Weight>
<vl:ItemCount>1</vl:ItemCount>
<vl:CarrierType>2</vl:CarrierType>
<vl:ShipState>CA</vl:ShipState>
</vl:CalculateShipping>
</vl:Transaction>
</fdggwsapi : FDGGWSApiOrderRequest>

The following table lists the required and optional fields for the shipping charge calculation. All
paths are relative to fdggwsapi:FDGGWSApiOrderRequest/vl:Transaction.

FIELD REQUIRED
v1:CalculateShipping/
v1:SubTotal Required
v1:Weight Required
v1:ltemCount Required
v1:CarrierType Required
v1:ShipState Required

6.3.2 Calculate Tax

The following code is a sample of a tax calculation using the minimum required elements:

<fdggwsapi : FDGGWSApiOrderRequest

xmlns:vl=
“http://secure.linkpt.net/fdggwsapi/schemas us/v1”

xmlns: fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">

<vl:Transaction>
<vl:CalculateTax>

<vl:SubTotal>12.0</v1:SubTotal>
<vl:ShipState>CA</vl:ShipState>
<v1:ShipZip>93065</v1:ShipZip>

</vl:CalculateTax>
</vl:Transaction>

</fdggwsapi : FDGGWSApiOrderRequest>

The following table lists the required and optional fields for the tax calculation. All paths are

relative to fdggwsapi:FDGGWSApiOrderRequest/vl:Transaction.

FIELD REQUIRED
vl:CalculateTax/
v1:SubTotal Required
v1:ShipState Required
v1:ShipZip Required

28

7 Additional Web Service Actions

In addition to credit card and check transactions, the First Data Global Gateway Web Service
API supports actions for recurring payments and a system check to test if the system is online.

Web service actions are contained in the fdggwsapi:FDGGW SApiActionRequest element.

7.1 Recurring Payments

The Recurring Payment action allows you to install, modify or cancel recurring credit card and
check payments. In addition, it allows you to schedule single payments for future dates.

7.1.1 Install Recurring Payment

You can install a recurring payment for credit card or check transactions. The transactions can
begin on the current date. If you set the start date as the current date, the first transaction
processes immediately. This feature can schedule a single transaction in the future. You cannot
set a start date in the past.

The following example shows how to install a recurring credit card, once a month for 12
months, starting on December 31, 2011:

<fdggwsapi :FDGGWSApiActionRequest
xmlns: fdggwsapi=
"http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi"
xmlns:al=
"http://secure.linkpt.net/fdggwsapi/schemas us/al"
xmlns:vl=
"http://secure.linkpt.net/fdggwsapi/schemas us/v1">
<al:Action>
<al:RecurringPayment>
<al:RecurringPaymentInformation>
<al:RecurringStartDate>20111231</al:RecurringStartDate>
<al:InstallmentCount>12</al:InstallmentCount>
<al:InstallmentFrequency>1</al:InstallmentFrequency>
<al:InstallmentPeriod>month</al:InstallmentPeriod>
</al:RecurringPaymentInformation>
<al:TransactionDataType>
<al:CreditCardData>
<vl:CardNumber>4012000033330026</v1:CardNumber>
<vl:ExpMonth>12</v1:ExpMonth>
<vl:ExpYear>12</vl:ExpYear>
</al:CreditCardData>
</al:TransactionDataType>
<vl:Payment>
<vl:ChargeTotal>10.00</v1l:ChargeTotal>
<vl:SubTotal>5.00</v1l:SubTotal>
</vl:Payment>
<vl:Shipping>
<vl:Addressl>...</v1:Addressl>
<vl:Carrier>...</vl:Carrier>
<vl:City>...</vl:City>

29

<vl:Country>...</vl:Country>
<vl:Items>...</vl:Items>
<vl:State>...</vl:State>
<vl:Total>...</vl:Total>
<vl:Weight>...</vl:Weight>

</v1l:Shipping>

<vl:Billing>
<vl:Addressl>...</vl:Addressl>
<vl:City>...</vl:City>
<vl:Country>...</vl:Country>
<vl:State>...</vl:State>
<vl:Zip>...</v1:Zip>

</v1:Billing>

<vl:TransactionDetails>
<vl:InvoiceNumber>...</vl:InvoiceNumber>
<vl:TransactionOrigin>...</vl:TransactionOrigin>
<v1:UserID>...</v1:UserID>

</vl:TransactionDetails>

<al:Function>install</al:Function>

</al:RecurringPayment>
</al:Action>
</fdggwsapi : FDGGWSApiActionRequest>

The following example shows how to install a single check payment on December 31, 2011:

<fdggwsapi: FDGGWSApiActionRequest
xmlns: fdggwsapi=
"http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi"
xmlns:al=
"http://secure.linkpt.net/fdggwsapi/schemas us/al"
xmlns:vl=
"http://secure.linkpt.net/fdggwsapi/schemas us/v1">
<al:Action>
<al:RecurringPayment>
<al:RecurringPaymentInformation>
<al:RecurringStartDate>20111231</al:RecurringStartDate>
<al:InstallmentCount>1</al:InstallmentCount>
<al:InstallmentFrequency>1</al:InstallmentFrequency>
<al:InstallmentPeriod>month</al:InstallmentPeriod>
</al:RecurringPaymentInformation>
<al:TransactionDataType>
<al:TeleCheckData>
<v1:CheckNumber>111</CheckNumber>
<vl:AccountType>pc</AccountType>
<vl:AccountNumber>1234567890</AccountNumber>
<v1l:RoutingNumber>055001054</RoutingNumber>
<vl:DrivingLicenseNumber>U12345678</DrivingLicenseNumber>
<vl:DrivingLicenseState>CA</DrivingLicenseState>
</al:TeleCheckData>
</al:TransactionDataType>
<vl:Payment>
<vl:ChargeTotal>1</ns3:ChargeTotal>
</vl:Payment>
<vl:Shipping>
<vl:Addressl>...</vl:Addressl>
<vl:Carrier>...</vl:Carrier>
<vl:City>...</vl:City>

30

<vl:Country>...</vl:Country>
<vl:Items>...</vl:Items>
<vl:State>...</vl:State>
<vl:Total>...</vl:Total>
<vl:Weight>...</vl:Weight>

</v1l:Shipping>

<vl:Billing>
<vl:Addressl>...</vl:Addressl>
<vl:City>...</vl:City>
<vl:Country>...</vl:Country>
<vl:State>...</vl:State>
<vl:Zip>...</v1:Zip>

</v1:Billing>

<vl:TransactionDetails>
<vl:InvoiceNumber>...</vl:InvoiceNumber>
<vl:TransactionOrigin>...</vl:TransactionOrigin>
<vl:UserID>...</v1:UserID>

</vl:TransactionDetails>

<al:Function>install</al:Function>

</al:RecurringPayment>
</al:Action>
</fdggwsapi : FDGGWSApiActionRequest>

The following table describes the optional or required fields for installing a recurring transaction.
Also, you must submit the data required for a credit card or check sale transaction. For credit
card, see 6.1.1 Sale on page 11, for check, see 6.2.1 Sale on page 23 for details. (v1:Billing and
v1:Shipping are optional; however, transactions that do not include these elements may
downgrade.) The transaction data must be submitted as a child of al:RecurringPayment. All
paths are relative to fdggwsapi:FDGGWSApiActionRequest / al:Action/ al:RecurringPayment.

FIELD REQUIRED

al:Function Required

al:RecurringPaymentinformation

al:RecurringStartDate Required
al:InstallmentCount Required
al:InstallmentFrequency Required
al:InstallmentPeriod Required
al:MaximumFailures Required

7.1.2 Modify Recurring Payment

The following example shows how to modify an existing recurring payment using the Order ID of
the original instalment:

<fdggwsapi : FDGGWSApiActionRequest

xmlns: fdggwsapi=
"http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi"
xmlns:al=
"http://secure.linkpt.net/fdggwsapi/schemas us/al"

31

xmlns:vl=

"http://secure.linkpt.net/fdggwsapi/schemas us/v1">

<al:Action>
<al:RecurringPayment>

<al:Function>modify</al:Function>

<vl1:Billing>...</v1:Billing>
<vl:Shipping>...</vl:Shipping>

<al:OrderId>

e368a525-173f-4f56-9ae2-beb4023a6993

</al:0rderId>

<al:RecurringPaymentInformation>

<al:InstallmentCount>999</al:InstallmentCount>

</al:RecurringPaymentInformation>

</al:RecurringPayment>
</al:Action>

</fdggwsapi : FDGGWSApiActionRequest>

You can modify both the recurring payment information and the transaction details. You only
need to include the fields that need to be modified. Some dependent fields may be required, for
example, you must update the expiration date if you update the card number.

The following table describes the optional or required fields for modifying a recurring transaction.
For credit card transaction fields, see 6.1.1 Sale on page 11; for check, see 6.2.1 Sale on page
23 for details. (v1:Billing and v1:Shipping are optional; however, transactions that do not include
these elements may downgrade.) The transaction data must be submitted as a child of
al:RecurringPayment. All paths are relative to fdggwsapi:FDGGWSApiActionRequest /

al:Action/ al:RecurringPayment.

FIELD REQUIRED

al:Function Required
al:Orderld Required
al:RecurringPaymentinformation

al:RecurringStartDate Required

al:InstallmentCount Required

al:InstallmentFrequency Required

al:InstallmentPeriod Required

al:ChargeTotal Required

al:MaximumFailures Required

7.1.3 Cancel Recurring Payment

The following example shows how to cancel an existing recurring payment using the Order ID of

the original instalment:

<fdggwsapi : FDGGWSApiActionRequest
xmlns: fdggwsapi=

32

"http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi"
xmlns:al=
"http://secure.linkpt.net/fdggwsapi/schemas us/al"
xmlns:vl=
"http://secure.linkpt.net/fdggwsapi/schemas us/v1">
<al:Action>
<al:RecurringPayment>
<al:Function>cancel</al:Function>
<al:OrderId>
e368a525-173f-4£56-9ae2-beb4023a6993
</al:0rderId>
</al:RecurringPayment>
</al:Action>
</fdggwsapi : FDGGWSApiActionRequest>

The following table describes the optional or required fields for cancelling a recurring transaction.
All paths are relative to fdggwsapi:FDGGWSApiActionRequest / al:Action/
al:RecurringPayment.

FIELD REQUIRED

al:Function Required

al:Orderld Required

7.2 SystemCheck

The SystemCheck action allows you to check that the First Data Global Gateway Web Service
APl is currently available. Most integrators do not need to perform this check more frequently
than once every 15 minutes; you should not perform this check more frequently than once every
5 minutes.

The following code is a sample of the SystemCheck call.

<fdggwsapi : FDGGWSApiActionRequest
xmlns: fdggwsapi=
"http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi"
xmlns:al=
"http://secure.linkpt.net/fdggwsapi/schemas us/al"
xmlns:vl=
"http://secure.linkpt.net/fdggwsapi/schemas us/v1">

<al:Action>

<al:SystemCheck/>

</al:Action>

</fdggwsapi : FDGGWSApiActionRequest>

33

8 XML Tag Reference

This chapter provides a reference for the XML elements used in sending transactions and
actions to the First Data Global Gateway Web Service API.

8.1 CreditCardTxType

The following table describes the sub-elements of the v1:CreditCardTxType element:

ELEMENT DATA TYPE DESCRIPTION

v1:Type Xs:string The transaction type. Valid values are:
sale

ForceTicket

preAuth

postAuth

Return

Credit

Void

8.2 CreditCardData

The following table describes the sub-elements of the v1:CreditCardData element:

ELEMENT DATA TYPE DESCRIPTION

v1:CardNumber Xs:string The customer’s credit card number. The

string must contains only digits; passing

the number in the format XXXX-XXXX-XXXX-
xxxx will result in an error.

v1:ExpMonth Xs:string The expiration month of the customer’s
credit card. The content of this element
must always contains two digits, for
example, use 07 for July.

v1:ExpYear Xs:string The expiration year of the customer’s
credit card. The content of this element
must always contains two digits, for
example, use 09 for 2009.

v1:CardCodeValue Xs:string The three or four digit card security code
(CSC), card verification value (CVV) or
code (CVC), which is typically printed on
the back of the credit card. For
information about using CSC, contact
support.

34

ELEMENT DATA TYPE DESCRIPTION

v1:CardCodelndicator Xs:string Indicates why the card code value was
not provided. Valid values are:

NOT_PROVIDED
PROVIDED
ILLEGIBLE
NO_IMPRINT
NOT_PRESENT

v1l:TrackData Xs:string The track data of a card when using a
card reader instead of keying in card
data. Use this value instead
CardNumber, ExpMonth and ExpYear
when swiping the card. This field needs
to contain either track 1 data, track 2
data, or concatenated track 1 and 2 data.
Concatenated track data must include
the track and field separators as they are
stored on the card. Track 1 and track 2
data are in the format: %<track 17?;<track
2>7?

8.3 CreditCard3DSecure

The following table describes the sub-elements of the v1:CreditCard3DSecure element:

ELEMENT DATA TYPE DESCRIPTION

v1:PayerSecurityLevel Xs:string The two-digit PayerSecurityLevel
returned by your Merchant Plug-in.

v1:AuthenticationValue Xs:string The AuthenticationValue (MasterCard:
AAV or VISA: CAAV) returned by your
Merchant Plug-in.

v1:XID Xs:string The XID returned by your Merchant
Plug-in.

Note: These are values you receive from your Merchant Plug-in for 3D Secure or a 3D Secure
provider. The 3D Secure functionality of First Data Global Gateway Connect cannot be used for

transactions via the Web Service API.

35

8.4 Payment

The following table describes the sub-elements of the v1:Payment element:

ELEMENT DATA TYPE DESCRIPTION

v1l:ChargeTotal xs:double The total transaction amount, including
tax, VAT, and shipping amounts. The
number of positions after the decimal
point must not exceed 2. 3.123 is invalid.
3.12, 3.1, and 3 are valid.

v1:SubTotal xs:double The sub total amount of the transaction,
not including tax, VAT, or shipping
amounts.

V1:Tax xs:double Tax amount of the transaction

v1:VATTax xs:double VAT tax amount

v1:Shipping xs:double Shipping amount of the transaction

8.5 TransactionDetails

The following table describes the sub-elements of the v1:TransactionDetails element:

ELEMENT

DATA TYPE

DESCRIPTION

vl:UserlD

Xs:string

User ID of the user who performed the
transaction. This value is used for
reporting.

v1:InvoiceNumber

Xs:string

Invoice number assigned by the
merchant.

v1:Orderld

Xs:string

Order ID This must be unique for the
Store ID. If no Order ID is transmitted,
the Web Service API assigns a value.
The Order ID generated by Web Service
can have a maximum of 100 digits. The
Order ID field should not contain the
following characters: & % /.

v1:p

Xs:string

Customer’s IP address which can be
used by the Web Service API for fraud
detection by IP address. Must be in the
format xxx.xxx.xxx.xxx, for example
128.0.10.2 is a valid IP.

36

ELEMENT

DATA TYPE

DESCRIPTION

vl:ReferenceNumber

Xs:string

The six digit reference number received
as the result of a successful external
authorization (for example, by phone).
This value is required for mapping a
ForceTicket transaction to a previous
authorization.

v1:TDate

Xs:string

The TDate of the Sale, PostAuth,
ForceTicket, Return, or Credit
transaction referred to by a Void
transaction. The TDate value is returned
in the response to a successful
transaction. When performing a Void
transaction, the the TDate and Orderld of
the original transaction is required.

v1:Recurring

Xs:string

Indicates if the transaction is a recurring
transaction. Valid values are:

Yes
No

v1:TaxExempt

Xs:string

Indicates if the transaction is exempt
from tax. Valid values are:

Yes
No

vl:TerminalType

Xs:string

The type of the terminal performing the
transaction, up to 32 characters. Valid
values are:

Standalone — point-of-sale credit card
terminal

POS — electronic cash register or
integrated POS system

Unattended — self-service station

Unspecified — e-commerce, general,
CRT, or other applications

v1:TransactionOrigin

Xs:string

The source of the transaction. Valid
values are:

ECI - email or Internet
MOTO - mail order / telephone order
RETAIL - face to face

v1:PONumber

Xs:string

The purchase order number of the
transaction, if applicable.

37

8.6 Billing

The following table describes the sub-elements of the v1:Billing element:

ELEMENT DATA TYPE DESCRIPTION

v1:CustomerID Xs:string Merchant’s ID for the customer.

vl:Name Xs:string Customer’s Name - If provided, it will
appear on your transaction reports.

v1l:.Company Xs:string Customer’s company. If provided, it will
appear on your transaction reports.

v1:Addressl Xs:string The first line of the customer’s address. If
provided, it will appear on your
transaction reports.

v1:Address2 Xs:string The second line of the customer’s
address. If provided, it will appear on your
transaction reports.

v1:City Xs:string Customer’s city. If provided, it will appear
on your transaction reports.

v1:State Xs:string Customer’s state - If provided, it will
appear on your transaction reports.

v1:Zip Xs:string Customer’s ZIP code - If provided, it will
appear on your transaction reports.

v1:Country Xs:string Customer’s country - If provided, it will
appear on your transaction reports.

v1:Phone Xs:string Customer’s phone number - If provided, it
will appear on your transaction reports.

vl:Fax Xs:string Customer’s fax number - If provided, it will
appear on your transaction reports.

v1:Emalil Xs:string Customer’s email address - If provided, it
will appear on your transaction reports.

8.7 Shipping

The following table describes the sub-elements of the v1:Shipping element:

ELEMENT DATA TYPE DESCRIPTION
v1:Type Xs:string Shipping Method
v1l:Name xs:string Recipient’s name - If provided, it will

appear on your transaction reports.

38

ELEMENT DATA TYPE DESCRIPTION

v1:Addressl Xs:string The first line of the shipping address. If
provided, it will appear on your
transaction reports.

v1:Address2 Xs:string The second line of the shipping address.
If provided, it will appear on your
transaction reports.

v1:City Xs:string Recipient’s city - If provided, it will appear
on your transaction reports.

v1:State Xs:string Recipient’s state - If provided, it will
appear on your transaction reports.

v1:Zip Xs:string Recipient’s ZIP Code - If provided, it will
appear on your transaction reports.

v1:Country Xs:string Recipient’s country - If provided, it will
appear on your transaction reports.

v1:Carrier xs:integer Integer code defined by the merchant
identifying the carrier type.

v1:Total xs:double The transaction amount prior to
calculating shipping. The number of
positions after the decimal point must not
exceed 2. 3.123 is invalid. 3.12, 3.1, and
3 are valid.

v1l:Weight xs:double The weight of the item shipped, in pounds

or kilograms as determined by the
merchant.

8.8 TeleCheckTxType

The following table describes the sub-elements of the v1:TeleCheckTxType element:

ELEMENT

DATA TYPE

DESCRIPTION

v1:Type

Xs:string

Valid transaction type values are:
sale

void

return

8.9 TeleCheckData

The following table describes the sub-elements of the v1:TeleCheckData element:

39

ELEMENT DATA TYPE DESCRIPTION

v1:CheckNumber Xs:string Customer’s check number

v1:AccountType Xs:string Valid type of account values are:
PC — Primary checking

PS — Primary savings

BC — Backup checking

BS — Backup savings

v1:AccountNumber Xs:string Checking Account Number
v1:RoutingNumber Xs:string Customer’s Bank Routing Number
v1:DrivingLicenseNumber Xs:string Customer’s Driver’s License Number
v1:DrivingLicenseState Xs:string The two-digit abbreviation for the state that

issues the customer’s driver’s license.

8.10 CalculateShipping

The following table describes the sub-elements of the v1:CalculateShipping element:

ELEMENT DATA TYPE DESCRIPTION

v1:SubTotal xs:double Transaction amount prior to calculating
shipping. The number of positions after the
decimal point must not exceed 2. 3.123 is
invalid. 3.12, 3.1, and 3 are valid.

v1:Weight xs:double The weight of the item being shipped, in
pounds or kilograms as determined by the
merchant.

v1:itemCount xs:integer Number of items being shipped.

v1:CarrierType xs:integer Integer code defined by the merchant
identifying the carrier type

v1:ShipState v1:Zip Two-digit state abbreviation for the shipping
destination

8.11 CalculateTax

The following table describes the sub-elements of the v1:CalculateTax element:

ELEMENT DATA TYPE DESCRIPTION

v1:SubTotal xs:double Transaction amount prior to calculating tax.
The number of positions after the decimal
point must not exceed 2. 3.123 is invalid.
3.12, 3.1, and 3 are valid.

40

ELEMENT DATA TYPE DESCRIPTION
v1:ShipState Xs:string Two-digit state abbreviation for the shipping
destination
v1:ShipZip v1:Zip ZIP code of the shipping destination.

8.12 RecurringPayment

The following table describes the sub-elements of the al:RecurringPayment element:

ELEMENT

DATA TYPE

DESCRIPTION

al:Function

Xs:string

The type of recurring payment transaction.
Valid values are:

install
modify
cancel

al:Orderld

Xs:string

Order ID of the recurring payment being
modified or cancelled

al:RecurringPaymentinformatio
n

Complex

Contains the elements defining the recurring
payment

al:RecurringStartDate

Xs:string

Start Date of the recurring payment
transaction in YYYYMMDD format. This
value cannot be in the past.

al:InstallmentCount

Xs:string

Number of instalments of the recurring
payment

al:InstallmentFrequency

Xs:string

Frequency of the instalment. Combines with
the InstallmentPeriod to determine when the
instalments occur.

For example, use 2 for InstallmentFrequency
and week for InstallmentPeriod for bi-weekly
payments. Use 1 and month for monthly.

al:InstallmentPeriod

Xs:string

The period of the installment. Combines with
the InstallmentFrequency to determine when
the instalments occur. Valid values are:

day
week
month
year

41

9 Building a SOAP Request Message

The next step after building your transaction in XML is to build the SOAP envelope that wraps
the transaction.

The format for a SOAP envelope wrapping an operation sent to the First Data Global Gateway
Web Service APl is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header />
<SOAP-ENV:Body>
<!-- Transaction or action XML -->
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

The SOAP message contains a SOAP envelope with a header and message body. The Web
Service API does not require any headers for the SOAP message. The body contains the
transaction or action XML as defined in the previous sections. There are no further requirements
for mapping the type of transaction or action in the SOAP envelope. The Web Service API maps
the operation based on the content of the body.

For example, the complete SOAP message for a credit sale transaction looks like the following:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header />
<SOAP-ENV:Body>
<fdggwsapi : FDGGWSApiOrderRequest xmlns:fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<vl:Transaction xmlns:vl=
"http://secure.linkpt.net/fdggwsapi/schemas us/v1">
<vl:CreditCardTxType>
<vl:Type>sale</vl:Type>
</vl:CreditCardTxType>
<vl:CreditCardData>
<vl:CardNumber>4012000033330026</v1:CardNumber>
<vl:ExpMonth>12</v1:ExpMonth>
<vl:ExpYear>12</vl:ExpYear>
</vl:CreditCardData>
<vl:Payment>
<vl:ChargeTotal>120</vl:ChargeTotal>
</vl:Payment>
</vl:Transaction>
</fdggwsapi : FDGGWSApiOrderRequest>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

42

10 Reading the SOAP Response Message

The First Data Global Gateway Web Service API returns a SOAP message in response to your
transaction or action request.

e If your request is successful, the Web Service API returns an
fdggwsapi:FDGGWSApiOrderResponse or fdggwsapi:FDGGWSApiActionResponse in
the body of the SOAP message.

e |f your request is unsuccessful, the Web Service API returns a SOAP fault message.

Both SOAP message types are contained in the body of the HTTP response message.

10.1 SOAP Response Message

10.1.1Transaction

The First Data Global Gateway Web Service API returns a SOAP response message when your
transaction is successful and the Web Service API is able to return an approved or declined
response. The response message has the following format:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header />
<SOAP-ENV:Body>
<fdggwsapi : FDGGWSApiOrderResponse xmlns:fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<!-- transaction result -->
</fdggwsapi : FDGGWSApiOrderResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAP response contains no headers. The SOAP body contains the actual transaction result
contained in the fdggwsapi:FDGGWSApiOrderResponse element. The sub-elements are defined
in Analyzing the Transaction Response on page 48. The following is an example of the SOAP
message returned for an approved Sale transaction:

<?xml version="1.0" encoding="UTF-8"?2>
<SOAP-ENV:Envelope
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header />
<SOAP-ENV:Body>
<fdggwsapi: FDGGWSApiOrderResponse xmlns:fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<fdggwsapi:CommercialServiceProvider>
(@ShlE
</fdggwsapi:CommercialServiceProvider>
<fdggwsapi:TransactionTime>
Tue Nov 03 09:35:05 2009
</fdggwsapi:TransactionTime>
<fdggwsapi:TransactionID>

43

2000486340
</fdggwsapi:TransactionID>
<fdggwsapi:ProcessorReferenceNumber>

OK289C
</fdggwsapi:ProcessorReferenceNumber>
<fdggwsapi:ProcessorResponseMessage>

APPROVED
</fdggwsapi:ProcessorResponseMessage>
<fdggwsapi:ErrorMessage />
<fdggwsapi:OrderId>

A-eb0406bc-7eb8-419b-aala-7a439%94e2c83e
</fdggwsapi:OrderId>
<fdggwsapi :ApprovalCode>

OK289C0003529354 : NNN:
</fdggwsapi : ApprovalCode>
<fdggwsapi : AVSResponse>PPX</fdggwsapi : AVSResponse>
<fdggwsapi:TDate>1256168682</fdggwsapi:TDate>
<fdggwsapi:TransactionResult>

APPROVED
</fdggwsapi:TransactionResult>
<fdggwsapi:ProcessorResponseCode>

A
</fdggwsapi:ProcessorResponseCode>
<fdggwsapi:ProcessorApprovalCode>

440368
</fdggwsapi:ProcessorApprovalCode>
<fdggwsapi:CalculatedTax/>
<fdggwsapi:CalculatedShipping/>
<fdggwsapi:TransactionScore/>
<fdggwsapi:AuthenticationResponseCode>

XXX
</fdggwsapi:AuthenticationResponseCode>

</fdggwsapi : FDGGWSApiOrderResponse>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

10.1.2 Action
If you send an action, the Web Service API returns a fdggwsapi:FDGGWSApiActionResponse.

The response for a successful installment, modification or cancellation or for a system check
contains the value true for the parameter <fdggwsapi:Success>. The following is an example of
the message returned for a successful action:

<fdggwsapi : FDGGWSApiActionResponse xmlns:fdggwsapi=
“http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<fdggwsapi:Success>
true
</fdggwsapi:Success>
<fdggwsapi:CommercialServiceProvider/>
<fdggwsapi:TransactionTime>
Tue Nov 03 10:00:58 2009
</fdggwsapi:TransactionTime>
<fdggwsapi:TransactionID/>
<fdggwsapi : ProcessorReferenceNumber/>

44

<fdggwsapi : ProcessorResponseMessage/>
<fdggwsapi:ErrorMessage/>
<fdggwsapi:OrderId>
A-3384d07e-699%9a-48d3-ad44a-61lccefde0524
</fdggwsapi:0rderId>
<fdggwsapi : ApprovalCode/>
<fdggwsapi : AVSResponse/>
<fdggwsapi:TDate/>
<fdggwsapi:TransactionResult>
APPROVED
</fdggwsapi:TransactionResult>
<fdggwsapi:ProcessorResponseCode/>
<fdggwsapi :ProcessorApprovalCode/>
<fdggwsapi:TransactionScore/>
</fdggwsapi : FDGGWSApiActionResponse>

10.2 SOAP Fault Message

The First Data Global Gateway Web Service API returns a SOAP fault message when your

request is unsuccessful. The fault message has the following format:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header />
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring xml:lang="en-US">

<!-- fault message -->
</faultstring>
<detail>

<!-- fault message —--—>
</detail>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAP fault message may contain the following elements:

ELEMENT DATA TYPE DESCRIPTION

faultcode Xs:string Defines where the error occurred. Valid values are:

SOAP-ENV:Server
SOAP-ENV:Client

faultstring Xs:string Defines the fault type

detail Xs:string

Additional data depending on the fault type

The possible return values by faultcode and faultstring are defined in the following sections.

45

10.2.1.1 SOAP-ENV:Server

The SOAP-ENV:Server faultcode indicates that the Web Service API has failed to process your
transaction due to an internal system error. If you receive this as response, contact support to
resolve the problem.

The SOAP-ENV:Server message has the following format:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header />
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring xml:lang="en-US">
unexpected error
</faultstring>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAP SOAP-ENV:Envelope/SOAP-ENV:Body/SOAP-ENV:Fault contains the following
elements:

ELEMENT DATA TYPE DESCRIPTION

faultcode Xs:string This value is always:
SOAP-ENV:Server

faultstring Xs:string This value is always:
unexpected error

10.2.2 SOAP-ENV:Client

The SOAP-ENV:Client response includes a MerchantException faultcode indicating that the Web
Service API has found an error with the transaction you submitted. The MerchantException
indicates that the XML or authorization data provided by the merchant is faulty. This may have
one of the following reasons:

e Your store is registered as being closed. If you receive this message even though you
believe your store should be registered as open, contact support.

e The store ID / user ID combination you have provided for HTTPS authorization is
syntactically incorrect.

e The XML does not match the schema.

The MerchantException message has the following format:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header />

46

<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring xml:lang="en-US">
MerchantException
</faultstring>
<detail>
<!-- detailed explanation. —-->
</detail>
</SOAP-ENV:Fault>
</SOAP-ENV :Body>
</SOAP-ENV:Envelope>

The SOAP SOAP-ENV:Envelope/SOAP-ENV:Body/SOAP-ENV:Fault contains the following
elements:

ELEMENT DATA TYPE DESCRIPTION
faultcode Xs:string This value is always:
SOAP-ENV:Client
faultstring Xs:string This value is always:
MerchantException
detail/reason Xs:string The Web Service API returns a minimum of one
reason.

See 20.1 Merchant Exceptions on page 84 for detailed descriptions of errors.

47

11 Analyzing the Transaction Response

11.1 Approval Response

If your transaction is approved, the First Data Global Gateway Web Service API returns a SOAP
response message. The body of the message contains an

fdggwsapi:FDGGWSApiOrderResponse or fdggwsapi:FDGGWSApiActionResponse element.

The following table describes the sub-elements of the fdggwsapi:FDGGWSApiOrderResponse
element. The Web Service API always returns all of the elements listed below; however, some of

the elements may be empty.

ELEMENT DATA TYPE DESCRIPTION
fdggwsapi: Xs:string Indicates your provider
CommercialServiceProvider
fdggwsapi: TransactionTime Xs:string The time stamp set by the First Data
Global Gateway Web Service API
before returning the transaction
approval.

fdggwsapi: Xs:string The reference number returned by

ProcessorReferenceNumber the processor. This value may be
empty. You do not need to provide
this code in any further transaction;
however, you may need this value if
you have to contact support
regarding a transaction.

fdggwsapi: Xs:string In case of an approval, this element

ProcessorResponseMessage contains the following string:
APPROVED

fdggwsapi: Xs:string Response Code from the credit card

ProcessorResponseCode processor

fdggwsapi: Xs:string Approval Code from the credit card

ProcessorApprovalCode processor

fdggwsapi:ErrorMessage Xs:string Error Message. This element is

empty in case of an approval.

48

fdggwsapi:Orderld

Xs:string

This element contains the order ID.
For Sale, PreAuth, ForceTicket, and
Credit transactions, a new order ID is
returned. For PostAuth, Return, and
Void transactions, supply this
number in the v1:Orderld element for
identifying the transaction to which
you refer. The fdggwsapi:Orderld
element of a response to a PostAuth,
Return, or Void transaction simply
returns the order ID of the original
transaction. The Orderld generated
by Web Service can have a
maximum of 100 digits.

fdggwsapi:ApprovalCode

Xs:string

The approval code returned by the
processor. You do not need to
provide this code in any further
transaction; however, you may need
this value if you have to contact
support regarding a transaction.

fdggwsapi:AVSResponse

Xs:string

Address Verification System (AVS)
response

fdggwsapi:TDate

Xs:string

The TDate required for Void
transactions. Only returned for Sale
and PostAuth.

fdggwsapi: TransactionResult

Xs:string

The transaction result. Always
APPROVED in case of an approval.

fdggwsapi:TransactionlD

Xs:string

The Transaction ID used for this
transaction.

fdggwsapi:CalculatedTax

Xs:string

Calculated tax for the transaction

fdggwsapi:CalculatedShipping

Xs:string

Calculated shipping for the
transaction.

fdggwsapi: TransactionScore

Xs:string

A numerical value indicating the risk
of fraud on the transaction. Higher
values indicate a greater risk of
fraud. The actual range used for this
field has not yet been defined.

This field is only returns a value for
merchants who use the optional,
add-on Fraud Service.

49

fdggwsapi:
AuthenticationResponseCode

Xs:string

Response code returned by
processor for 3D Secure
transactions. See the 3DS
integration guide for values and
definitions.

This field only returns a value for 3D
Secure transactions for merchants
who use this optional, add-on
service.

11.2 Failure Response

If your transaction is declined or your action is rejected, the First Data Global Gateway Web
Service API returns an fdggwsapi:FDGGW SApiOrderResponse or

fdggwsapi:FDGGWSApiActionResponse element. The elements returned are the same as in the
case of a successful transaction request. Only the values differ.

The following table describes the sub-elements of the fdggwsapi:FDGGWSApiOrderResponse
element. The Web Service API always returns all of the elements listed below; however, some of

the elements may be empty.

ELEMENT DATA TYPE DESCRIPTION
fdggwsapi: Xs:string Indicates your provider.
CommercialServiceProvider
fdggwsapi: TransactionTime Xs:string The time stamp set by the First Data
Global Gateway Web Service API
before returning the transaction
approval.

fdggwsapi: Xs:string Reference Number returned by the

ProcessorReferenceNumber processor. This value may be empty.
You do not need to provide this code
in any further transaction; however,
you may need this value if you have
to contact support regarding a
transaction.

fdggwsapi: Xs:string Error Message returned by the

ProcessorResponseMessage processor. This value might be
empty.

fdggwsapi: Xs:string Response Code from the credit card

ProcessorResponseCode processor

fdggwsapi: Xs:string Approval Code from the credit card

ProcessorApprovalCode processor

50

ELEMENT

DATA TYPE

DESCRIPTION

fdggwsapi:ErrorMessage

Xs:string

Error message returned by the First
Data Global Gateway Web Service
API. Returned in the format SGS-
XXXXXX: Message, where XXXXXX
is a six-digit error code and Message
describing the error. This description
might be different from the processor
response message. For instance, in
the above example the follow error
message is returned:

SGS-002304: Credit card is expired
You may need this value if you have

to contact support regarding a
transaction.

fdggwsapi:Orderld

Xs:string

The Order ID. In contrast to an
approval, this Order ID is never
required for any further transaction,
but you may need this value if you
have to contact support regarding a
transaction. The Order ID generated
by Web Service can have a maximum
of 100 digits.

fdggwsapi:ApprovalCode

Xs:string

This element is empty in case of a
transaction failure.

fdggwsapi:AVSResponse

Xs:string

Returns the Address Verification
System (AVS) response

fdggwsapi:TDate

Xs:string

The TDate. Similar to the Order ID,
the TDate is never required for any
further transaction, but you may need
this value if you have to contact
support regarding a transaction.

fdggwsapi: TransactionResult

Xs:string

Valid values are:

DECLINED - the processor rejected
the transaction, for example, for
insufficient funds

FRAUD - fraud detected in the
transaction

FAILED — internal error at the
Gateway

fdggwsapi:TransactionID

Xs:string

Transaction ID used for this
transaction

fdggwsapi:CalculatedTax

Xs:string

Calculated tax for the transaction

fdggwsapi:CalculatedShipping

Xs:string

Calculated shipping for the
transaction.

51

ELEMENT

DATA TYPE

DESCRIPTION

fdggwsapi: TransactionScore

Xs:string

A numerical value indicating the risk
of fraud on the transaction. Higher
values indicate a greater risk of fraud.
The actual range used for this field
has not yet been defined.

This field is only returns a value for

merchants who use the optional, add-
on Fraud Service.

fdggwsapi:
AuthenticationResponseCode

Xs:string

This element is empty in case of a
transaction failure.

52

12 Building an HTTPS POST Request

Generally, the tools you use to communicate with the First Data Global Gateway Web Service
API support the building of HTTPS POST requests. This document describes the process for
doing this using the tools tested by First Data for accessing the Web Service API. If you are
using another tool, consult the documentation

The following table describes the values you need to build an HTTPS POST request:

PARAMETER

VALUE

DESCRIPTION

URL

https://

ws.firstdataglobalgateway.com/fdggwsap

i/services

This is the full URL of
the First Data Global
Gateway Web Service
API. Depending on the
functionality you use for
building HTTP
requests, you might
have to split this URL
into host and service
and provide this
information in the
appropriate HTTP
request headers.

Content-Type

text/xml

Indicates that the
SOAP message is
encoded in XML and
passed as content in
the HTTP POST
request body.

Authorization

Type: Basic
Username:
WS<store ID>._.1

Password: Password

Identifies your store at
the First Data Global
Gateway Web Service
API.

The Authorization
parameter takes the
following format:

Authorization: Basic
<authstring>

where <authstring> is
the base-64 encoded
result of the string
<userid>:<password>.

For example, if your
user name is

WS101. .1, and your
password myPpw, the
complete HTTP

53

authorization header
would be:
Authorization:
Basic
V1MxMDEuXy4wMDc6bX1
QVw==

The authorization string
is the base 64 encoding
result of the string
WsS101l. .1:myPW.

HTTP Body SOAP request XML The HTTP POST
request body contains
SOAP request
message.

12.1 PHP

You can use either the cURL library or the cURL command-line tool to communicate with the
Web Service API using PHP. In recent PHP versions, the cURL library is included as an
extension which needs to be activated. While this is a straightforward task on Windows servers,
it may require you to compile PHP on Unix/Linux machines. In this case, it may be easier to call
the cURL command line tool from your PHP script.

12.1.1Using the cURL PHP Extension

In PHP 5.2.9-2, activating the cURL extension simply requires you to uncomment the following
line in your php.ini file:

;extension=php curl.dll

Other PHP versions might require other actions in order to enable cURL. See your PHP
documentation for more information. After activating cURL, use the following code to set up an
HTTPS POST request:

<?php

// storing the SOAP message in a variable — note that the plain XML code
// is passed here as string for reasons of simplicity, however, it is

// certainly a good practice to build the XML e.g. with DOM - furthermore,
// when using special characters, you should make sure that the XML string
// gets UTF-8 encoded (which is not done here) :

Sbody = "<SOAP-ENV:Envelope ...>...</SOAP-ENV:Envelope>";

// initializing cURL with the FDGGWS API URL:

Sch =

curl init ("https://ws.firstdataglobalgateway.com/fdggwsapi/services/order.
wsdl") ;

// setting the request type to POST:

curl setopt (Sch, CURLOPT POST, 1);

// setting the content type:

curl setopt ($ch, CURLOPT HTTPHEADER, array ("Content-Type: text/xml"));

// setting the authorization method to BASIC:

54

curl setopt ($ch, CURLOPT HTTPAUTH, CURLAUTH BASIC);

// supplying your credentials:

curl setopt ($ch, CURLOPT USERPWD, "WS101l. .1:myPW");
// filling the request body with your SOAP message:

curl setopt ($ch, CURLOPT POSTFIELDS, S$body);

?>

The next chapter discusses setting the security options, which are necessary for enabling SSL
communication.

12.1.2Using the cURL Command Line Tool

If you choose to use the cURL command line tool, you do not need to perform any setup. The
following script shows you how to call the command line tool from your PHP script and set the
HTTPS POST request:

<?php

// storing the SOAP message in a variable - note that you have to escape
// " and \n, since the latter makes the command line tool fail,

// furthermore note that the plain XML code is passed here as string
// for reasons of simplicity, however, it is certainly a good practice
// to build the XML e.g. with DOM - finally, when using special

// characters, you should make sure that the XML string gets UTF-8

// encoded (which is not done here) :

Sbody = "<SOAP-ENV:Envelope ...>...</SOAP-ENV:Envelope>";

// setting the path to the cURL command line tool - adapt this path to
// the path where you have saved the cURL binaries:

Spath = "C:\curl\curl.exe";
// setting the FDGGWS API URL:
SapiUrl =

("https://ws.firstdataglobalgateway.com/fdggwsapi/services/order.wsdl") ;
// setting the content type:

ScontentType = " —--header \"Content-Type: text/xml\"";

// setting the authorization method to BASIC and supplying

// your credentials:

$user = " --basic --user WS101l. .l:myPW";

// setting the request body with your SOAP message — this automatically
// marks the request as POST:

Sdata = " --data \"".S$body."\"".

?>

12.2 ASP

WInHTTP 5.1 is included with Windows Server 2003 and Windows XP SP2. Use the following
code to set up an HTTPS POST request:

<%@ language="javascript"%>

<html>. . .<body>

<%

// storing the SOAP message in a variable — note that the plain XML code
// 1is passed here as string for reasons of simplicity, however, it is

55

// certainly a good practice to build the XML e.g. with DOM -

// furthermore, when using special characters, you should make sure that
// the XML string gets UTF-8 encoded (which is not done here) :

var body = "<SOAP-ENV:Envelope ...>...</SOAP-ENV:Envelope>";

// constructing the request object:

var request = Server.createObject ("WinHttp.WinHttpRequest.5.1") ;

// initializing the request object with the HTTP method POST

// and the FDGGWS API URL:

request.open ("POST",
"https://ws.firstdataglobalgateway.com/fdggwsapi/services/order.wsdl") ;
// setting the content type:

request.setRequestHeader ("Content-Type", "text/xml") ;

// setting the credentials:

request.setCredentials ("WS111901. .1 ", "aTenvipB ", 0);

&>
</body></html>

The sample code fragment is written in JavaScript; using VB Script instead does not
fundamentally change the code.

13 Establishing an SSL connection

You must establish a secure communication channel to send the HTTP request built in the
previous chapter. This ensures that the data sent between your client application and the First
Data Global Gateway Web Service API is encrypted and that both parties can be sure they are
communicating with each other and no one else.

The Web Service API requires an SSL connection with client and server exchanging certificates
to guarantee this level of security. The client and server certificates each uniquely identify the
party. This process works as follows:

1. The client begins the process by sending its client certificate to the server.

2. The server receives the client certificate and verifies it against the client certificate it has
stored for this client.

3. If valid, the server responds by sending its server certificate.

4. The client receives the server certificate and verifies it against the trusted server
certificate.

5. If valid, both parties establish the SSL channel, as they can be sure that they are
communicating with each other and no one else. All data exchanged between both
parties is encrypted.

Following this process, your application has to do two things: First, start the communication by
sending its client certificate. Second, verify the received server certificate. How this is
accomplished differs from platform to platform. However, in order to illustrate the basic concepts,
the PHP and ASP scripts started in the previous chapter will be continued by extending them
with the relevant statements necessary for setting up an SSL connection.

13.1 PHP

Again, you can choose to use either the cURL extension or the cURL command line tool to
integrate with the Web Service API using PHP. cURL requires the client certificate to be passed
as a PEM file, the client certificate private key passed as a separate file, and the client certificate
private key password to be supplied. While the private key is not technically necessary for
establishing an SSL connection, it is required for doing so with cURL and PHP.

13.1.1Using the PHP cURL Extension

The following code sample extends the script started in the previous chapter. The sample code
shows how to supply the parameters necessary for establishing an SSL connection with the
cURL extension:

<?php

// configuring cURL not to verify the server certificate:
curlisetopt($ch, CURLOPT SSL VERIFYPEER, O0);

// setting the path where cURL can find the client certificate:
curl setopt ($ch, CURLOPT SSLCERT, "C:\certs\WS10l. .l.pem");

// setting the path where cURL can find the client certificate’s
// private key:

curl setopt ($Sch, CURLOPT SSLKEY, "C:\certs\WS10l. .l.key");

57

// setting the key password:
curl setopt ($Sch, CURLOPT SSLKEYPASSWD, " ckp 1256591851");

2>
The next chapter discusses sending the message and receiving the response.

13.1.2Using the cURL Command Line Tool

The following code sample extends the script started in the previous chapter. The sample code
shows how to supply the parameters necessary for establishing an SSL connection with the
cURL command line tool:

<?php

// configuring cURL not to verify the server certificate:

SserverCert = “ -k “;
// setting the path where cURL can find the client certificate:
$clientCert = “ —-cert C:\certs\WS101l. .l.pem ”;

// setting the path where cURL can find the client certificate’s
// private key:

$clientKey = " --key C:\certs\WS10l. .1.key";
// setting the key password:

SkeyPW = " --pass ckp 1256591851";

2>

The next chapter discusses sending the message and receiving the response.

13.2 ASP

Before you can communicate using SSL with the First Data Global Gateway Web Service API,
you must install both client certificates in the certificate store. See 21 Installing the Client
Certificate on page 91 for instructions on installing the client certificate.

The following code sample extends the script started in the previous chapter. The sample code
shows how to set the path for WinHTTP to find the client certificate:

<%@ language="javascript"%>
<html>...<body>

<%

// setting the path where the client certificate to send can be found:
request.setClientCertificate ("LOCAL MACHINE\\My\\WS10l1. .1");

&>
</body></html>

If you use VBScript instead of JavaScript, you must replace the double-backslashes in the path
with single backslashes.

The next chapter discusses sending the message and receiving the response.

58

14 Sending the HTTPS POST Request and Receiving the Response

The final step in writing your client is sending the HTTPS POST request to the First Data Global
Gateway Web Service API and receiving the response. Most HTTP libraries cover the underlying
communication details and require only a single call that returns the HTTP response.

The First Data Global Gateway Web Service API returns a 200 status code and a SOAP
response in response to a successful HTTP POST request. If you send any invalid HTTP POST
parameters, the First Data Global Gateway Web Service API will return a standard HTTP error
code. If you send invalid data (for example, an invalid credit card number) in the SOAP request
message, the Web Service API will return a 500 status code and a SOAP fault message.

See 10 Reading the SOAP Response Message on page 43 for instructions on reading the SOAP
response message.

14.1 PHP

Again, you can choose to use either the cURL extension or the cURL command line tool to
integrate with the Web Service API using PHP.

14.1.1Using the PHP cURL Extension

The sample code below shows how to complete the PHP cURL extension script by making the
HTTPS POST request and receiving the response.

<?php

// telling cURL to return the HTTP response body as operation result

// value when calling curl exec:

curl setopt (Sch, CURLOPT RETURNTRANSFER, 1);

// calling cURL and saving the SOAP response message in a variable which
// contains a string like "<SOAP-ENV:Envelope ...>...</SOAP-
ENV:Envelope>":

$result = curl exec($ch);

// closing cURL:

curl close($ch);

2>

The HTTPS call returns a SOAP response or fault message in the HTTP response body.

14.1.2Using the cURL Command Line Tool

Performing the HTTPS POST request with the cURL command line tool simply requires
executing the cURL command with the PHP exec command. The PHP exec command saves
each line returned by an external program as an element of an array. Therefore, to get the
complete HTTP response body, you must concatenate the elements of the array.

The sample code below shows how to complete the PHP cURL extension script by making the
HTTPS POST request and receiving the response.

59

<?php

// saving the whole command in one variable:

Scurl = S$path.

Sdata.

ScontentType.

Suser.

SserverCert.

SclientCert.

SclientKey.

SkeyPW.

SapiUrl;

// preparing the array containing the lines returned by the cURL
// command line tool:

SreturnArray = array();

// performing the HTTP call by executing the cURL command line tool:
exec ($Scurl, S$returnArray);

// preparing a variable taking the complete result:

Sresult = "";

// concatenating the different lines returned by the cURL command
// line tool - this result in the variable S$result carrying the entire
// SOAP response message as string:

foreach (SreturnArray as $item)

Sresult = Sresult.S$item;

2>

14.2 ASP

The sample code below shows how to complete the ASP script by calling the request’s send
method, with the SOAP XML as a parameter.

<%@ language="javascript"$>
<html>. . .<body>
<%

// doing the HTTP call with the SOAP request message as input:
request.send (body) ;

// saving the SOAP response message in a string variable:

var response = request.responseText;

&>

</body></html>

After the request is completed, you can access the response body through the responseText
property of the request.

15 Using .NET Framework

First Data has tested the First Data Global Gateway Web Service API with the C# 2.0 .NET
Framework.

15.1 Prerequisites

First you need to install the client certificate (WS<Store_ID>. .1.p12). See 21 Installing the
Client Certificate on page 91 for instructions on installing the client certificate.

The user executing the program has access to the certificate after installation. To do so, first
download the WinHttpCertCfg tool from Microsoft. Use the following URL.:

http://www.microsoft.com/downloads/details.aspx?familyid=c42e27ac-3409-
40e9-8667-c748e422833f&displaylang=en

To grant access to the user, using the command line, navigate to the directory where you
installed WinHttpCertCfg and enter the following command:

winhttpcertcfg.exe -g -a OtherUserID -c LOCAL MACHINE\MY -s WSstoreid. .1.pl2

OtherUserID IS the name of the user executing the application. wSstoreid. .1.p12Iisthe
name of the client certificate. Replace this value with the name of your client certificate. The
name should be in the format WS<store ID>. .1. Verify this value when you install the client
certificate using the instructions above.

You must also install the Web Service Enhancements (WSE) 3.0 for Microsoft .NET. Use the
following URL to view the system requirements and download the installer:

http://www.microsoft.com/downloads/details.aspx?FamilyID=018a09fd-3a74-
43c5-8ecl-8d789091255d&displaylang=en

61

http://www.microsoft.com/downloads/details.aspx?familyid=c42e27ac-3409-40e9-8667-c748e422833f&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=c42e27ac-3409-40e9-8667-c748e422833f&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=018a09fd-3a74-43c5-8ec1-8d789091255d&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=018a09fd-3a74-43c5-8ec1-8d789091255d&displaylang=en

15.2 Creating Web Service Reference Classes in .NET
To create the web service reference classes for your project in .NET, follow these steps:

1. Right-click on the project in the Solution Explorer and select Add Web Reference.

SOl ERD I D GG W/ i —
@ 2] |
I_a Solution FDGEWSClient' {1 project)
[(=4 Properti |£| Refresh
g Referen) ... Buid
Farml.q
] Progran] Rghuild
Clean
Publish. ..
Add 3

Add Reference...

| Cndd Weh Reference...->|

5’,}, Wiew Class Diagram

Set as StartUp Project
Debug 3
Cuk

Paste

X e

Remove
Rename
Unload Project
Properties

WSE Settings 3.0...

2. Download the wsdl from the below location.
https://ws.firstdataglobalgateway.com/fdggwsapi/services/order.wsdl

3. Download the schemas from the below location.
a. https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/vl.xsd
b. https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/al.xsd
c. https:/iws.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xsd

4. The following dialog displays. Enter the location of the WSDL file in the URL field.

Add Web Reference EHE
Mavigate to a web service URL and click Add Reference to add all the available services.,
< JEra - ™ N EA
URL: (I\(Z_W;ﬂ:lientﬁ,wsdlﬁ,order.wsdl j EdGo
;I Web services found at this URL:
Start Browsing for Web Services =
Use this page as a starting point to find Web services, You can click the links
below, o type a known URL into the address bar,
Browse to:
s Web services in this solution
= Web services on the local machine -
= Browse UDDI Servers on the local network W FETEENEE AT
GQuery your local network for UDDI servers,
Add/Reference |
=l Cancel |
Y,

The root schema imports the other two schemas (v1 and al) using relative URLs as
shown in the code below. The directory structure for your application needs to match the
directory structure shown in the schema file.

<xs:import namespace=" http://secure.linkpt.net/fdggwsapi/schemas us/v1"

schemalLocation="../schemas us/vl.xsd" />
<xs:import namespace=" http://secure.linkpt.net/fdggwsapi/schemas us/al"
schemalocation="../schemas us/al.xsd" />

If you have saved the WSDL file at C:\FDGGW SClient\wsd\order.wsdl, save the XSD
files in the path C:\FDGGWSClient\schemas_us\.

63

https://ws.firstdataglobalgateway.com/fdggwsapi/services/order.wsdl
https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/v1.xsd

Click Go, next to the URL field.

Add Web Reference

Mavigate ko a web service URL and click Add Reference to add all the available services,

O pak °|i@ﬁ

LRL: | C:\FDGEWSClientiwsdlorder, wsdl =l

| ‘web services found at khis URL:
"FDGGWSApiOrderService" Description B

1 Service Found: ;I
Methods - order
= FDGGWSApiAction {) As boolean
» FDGGWSApiOrder ()
I-

Web reference name:

webReference

LI Cancel |

Y
5. You can change the name of the web reference by editing the Web reference name
field. Click Add Reference.

6. Inthe Project Solution Explorer, press the middle button (circled in the image below) to
displays the files created:

=)] 2
(o4 Solution FDGEWSClient' (1 project)
= (3 FDGGWSClient
[za] Properties
= [F References
----- 2 System
----- A Syskem,Data
----- 2 System, Deplovment
----- « 2 System, Drawing
----- «2 System.Enterpriseservices
----- 2 System, Weh, Services
----- 2 Gystem, Windows, Farms
..... 0 TGystemn, Xl
= L F ‘Web References
= @ WebReference
..... li:l al.xsd
----- Eﬂ Fdggwsapi. xsd
----- @ order.wsd|
= Reference.map
----- EE]FDGGWEP.DiP.EtiDI‘IRESDDI‘ISE.dataSDLlrlIE
----- gE;'|FDGG'-.-'-.-'S.E'.|:uilCtlr|:IErFlEs|:||:||'|51E:.u:I-f:I:.Euscuun:E
- %%ﬂ Reference.cs
1] wlxsd

-~

- = app.config
- 2] Forml.cs
..... -:lg Prograrm.cs

7. Now you can create an instance of the client web service class in your code, using the
following format:

FDGGWSApiOrderService oFDGGWSApiOrderService = new
FDGGWSApiOrderService () ;

15.3 Writing the .NET Client

The sample code below shows a C# .NET client.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

65

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using FDGGWSClient.FDGGWSRef;

using System.Security.Cryptography.X509Certificates;
using System.Net;

namespace FDGGWSClient
{ public partial class Forml : Form
{ public Forml ()
{ InitializeComponent () ;

}

private void buttonl Click(object sender, EventArgs e)
{
ServicePointManager.Expect1l00Continue = false;
// Initialize Service Object FDGGWSApiOrderService
oFDGGWSApiOrderService =
new FDGGWSApiOrderService () ;
// Set the WSDL URL
OoFDGGWSApiOrderService.Url =
@"
https://ws.firstdataglobalgateway.com/fdggwsapi/services/order.wsdl”,
// Configure Client Certificate
OFDGGWSApiOrderService.ClientCertificates.Add
(X509Certificate.CreateFromCertFile
("C:/FDGGWSClient/WS111901. .1l.pem"));
// Set the Authentication Credentials
NetworkCredential nc =
new NetworkCredential ("WS111901. .1", "JS2ND7Dc");
OFDGGWSApiOrderService.Credentials = nc;
// Create Sale Transaction Request
FDGGWSApiOrderRequest oOrderRequest =
new FDGGWSApiOrderRequest () ;
Transaction oTransaction = new Transaction();
CreditCardTxType oCreditCardTxType = new CreditCardTxType () ;
oCreditCardTxType.Type = CreditCardTxTypeType.sale;
CreditCardData oCreditCardData = new CreditCardData () ;
oCreditCardData.ItemsElementName =
new ItemsChoiceType[] { ItemsChoiceType.CardNumber,
ItemsChoiceType.ExpMonth, ItemsChoiceType.ExpYear };
oCreditCardData.Items = new string|]
{ "4012000033330026", "12", "12" };
oTransaction.Items = new object]]
{ oCreditCardTxType, oCreditCardData };
Payment oPayment = new Payment () ;
oPayment.ChargeTotal = 120;
oTransaction.Payment = oPayment;
oOrderRequest.Item = oTransaction;

// Get the Response
FDGGWSApiOrderResponse oReponse = null;
try

66

First Data Corp. Web Service APl v1.7

67

16 Using a Java Framework

First Data has tested the First Data Global Gateway Web Service API with the following Java
frameworks:

e Axis Framework (version 2-1.5)
e Spring-WS (version 1.5.7)

The following sections discuss integrating with the Web Service API using these frameworks.

16.1 Axis Framework

The Axis Framework is a framework for building applications that create and process SOAP
messages. This section discusses how to use the Axis Framework to connect with the First Data
Global Gateway Web Service API.

The Axis Framework provides the WSDL2Java tool which creates stub code based on WSDL
files.

16.1.1Client Certificate Configuration

Before using the WSDL2Java tool, you must configure the tool to use the client certificate. To
configure the WSDL2Java tool, open the wsdl2java.bat/wsdl2java.sh and add the following Java
run-time optional parameter:

For wsdl2java.bat:

SET JAVA OPTS=%JAVA OPTS% -
Djavax.net.ssl.keyStore=<client certificate install absolute path>/WS<stor
e id>. .1l.ks

SET JAVA OPTS=%JAVA OPTS% -
Djavax.net.ssl.keyStorePassword=<keystore password>

For wsdl2java.sh:
JAVA OPTS="$JAVA OPTS -
Djavax.net.ssl.keyStore=<client certificate install absolute path>/WS<stor
e id>. .1.ks”

JAVA OPTS="$JAVA OPTS -
Djavax.net.ssl.keyStorePassword=<keystore password>"

16.1.2 Generating Client Stubs

The WSDL2Java tool can be found in Axis’ bin directory. To create the client stubs, enter the
following command:

wsdl2java.bat -uri <WSDL URL> -S <destination folder for stub classes>

68

16.1.3Writing the Axis Client

After generating the stubs, the next step is to write the client program that sends and receives
the SOAP requests and responses.

The following sample program makes an Order request for the Sale Transaction.
// all imports go here
public class FDGGWSAxisClient ({
public static void main (String args[]) {

// Needed for Client Certificate

System.setProperty ("javax.net.ssl.keyStore",

"<<PATH TO THE CLIENT CERT KEYSTORE FILE>>");
System.setProperty ("javax.net.ssl.keyStorePassword",
"<<KEYSTORE PASSWORD>>") ;

// HTTP Authentication
Options options = fdggwsstub. getServiceClient ().getOptions();

HttpTransportProperties.Authenticator auth = new
HttpTransportProperties.Authenticator () ;

auth.setPreemptiveAuthentication (true) ;
auth.setUsername ("WS111901. .1");// User Name

auth.setPassword ("OWRtTglK"); //Password
options.setProperty (HTTPConstants.AUTHENTICATE, auth) ;

FDGGWSApiOrderServiceStub fdggwsstub = new FDGGWSApiOrderServiceStub () ;
Type typel sale type = Type typel.valueb;

CreditCardTxType creditCardTxType = new CreditCardTxType () ;
creditCardTxType.setType (sale type);

CardNumber typel cardNumber typel = new CardNumber typel();
cardNumber typel.setCardNumber type0 ("4012000033330026") ;

ExpMonth typel expMonth typel = new ExpMonth typel();
expMonth typel.setExpMonth typel("12");

ExpYear typel expYear typel = new ExpYear typel();
expYear typel.setExpYear type0("12");

Card card = new Card() ;
card.setCardNumber (cardNumber typel) ;
card.setExpMonth (expMonth typel) ;
card.setExpYear (expYear typel);

CreditCardDataSequence type(l creditCardDataSequence typel = new
CreditCardDataSequence typeO () ;

creditCardDataSequence typel.setCard(card) ;

CreditCardDataChoice typeO dataChoice = new CreditCardDataChoice typeO();
dataChoice.setCreditCardDataSequence typel (creditCardDataSequence type0) ;

CreditCardData creditCardData = new CreditCardData () ;
creditCardData.setCreditCardDataChoice typeO (dataChoice) ;

BigDecimal bigDecimal = new BigDecimal ("10") ;

ChargeTotal typel chargeTotal typel = new ChargeTotal typel();
chargeTotal typel.setChargeTotal typeO (bigDecimal) ;

Amount amount = new Amount () ;
amount.setChargeTotal (chargeTotal typel);

Payment typeO payment type0 = new Payment typeO();
payment type0.setAmount (amount) ;

Payment payment = new Payment () ;
payment.setPayment (payment typeO) ;

TransactionSequence typeO transactionSequence type0 = new
TransactionSequence typeO();

transactionSequence type0.setCreditCardTxType (creditCardTxType) ;
transactionSequence type0.setCreditCardData (creditCardData) ;

TransactionChoice type0 transactionChoice typeO= new
TransactionChoice typeO () ;

transactionChoice typel.setTransactionSequence typeO (transactionSequence t
ype0) ;

Transaction t = new Transaction();
t.setTransactionChoice typeO (transactionChoice typeO);
t.setPayment (payment typeO) ;

FDGGWSApiOrderRequest fdggwsApiOrderRequest = new FDGGWSApiOrderRequest () ;
fdggwsApiOrderRequest.setTransaction (t) ;

FDGGWSApiOrderResponse response =
fdggwsstub.fDGGWSApiOrder (fdggwsApiOrderRequest) ;

System.out.println ("The Transaction Result is
"+response.getFDGGWSApiOrderResponse () .getTransactionResult ()) ;

System.out.println ("The Order ID is
"+response.getFDGGWSApiOrderResponse () .getOrderId()) ;
}

}

16.1.4SSL and HTTP Authentication
16.1.4.1 SSL

Your application must provide the client certificate for security.
The following code sample shows how to provide the client certificate.

// Needed for Client Certificate

System.setProperty ("javax.net.ssl.keyStore",

"<<PATH TO THE CLIENT CERT KEYSTORE FILE>>");
System.setProperty ("javax.net.ssl.keyStorePassword",
"<<KEYSTORE PASSWORD>>") ;

16.1.4.2 HTTP Authentication

The First Data Global Gateway Web Service API requires HTTP basic authorization on all calls
to the web service.

The following code sample shows how to pass the user name and password for HTTP basic
authorization.

Options options = ipgstub. getServiceClient ().getOptions();
HttpTransportProperties.Authenticator auth = new
HttpTransportProperties.Authenticator () ;
auth.setPreemptiveAuthentication (true) ;
auth.setUsername ("WS111920. .1");
auth.setPassword ("OWRtTglK") ;
options.setProperty (HTTPConstants.AUTHENTICATE, auth) ;

16.2 Spring Web Services

Spring Web Services (Spring-WS) is designed for XML-based access to web services and
supports the use of marshallers and unmarshallers, so that your application can be coded solely
using Java objects.

WebServiceTemplate is the core class for client-side web service access in Spring-WS. It
contains methods for sending Source objects and receiving response messages as either
Source or Result objects. Additionally, it can marshal objects to XML before sending them and
unmarshal any response XML into an object again

16.2.1Client Configuration

The following code sample shows the required configuration settings that go in the
applicationContext.xml file.

<?xml version="1.0" encoding="UTEF-8"?>

<beans xmlns=http://www.springframework.org/schema/beans

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

71

http://www.springframework.org/schema/beans

<bean id="messagFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

<bean id="abstractClient" abstract="true">
<constructor-arg ref="messagFactory"/>
<property name="destinationProvider">
<bean class="org.springframework.ws.client.
support.destination.WsdlllDestinationProvider">
<property name="wsdl" value=

"https://ws.firstdataglobalgateway.com/services/order.wsdl" />
</bean>
</property>
</bean>

<bean id="marshaller"
class="org.springframework.oxm.xmlbeans.XmlBeansMarshaller"/>

<bean id="httpClientParams"
class="org.apache.commons.httpclient.params.HttpClientParams">

<property name="authenticationPreemptive" value="true"/>
<property name="connectionManagerClass"
value="org.apache.commons.httpclient.MultiThreadedHttpConnectionManager"/>
</bean>

<bean id="httpClient" class="org.apache.commons.httpclient.HttpClient">
<constructor-arg ref="httpClientParams"/>
</bean>

<bean id="credentials"
class="org.apache.commons.httpclient.UsernamePasswordCredentials">
<constructor-arg value="WS111901. .1"/>
<constructor-arg value="gqRAPLGFY"/>
</bean>

<bean id="messageSender"
class="org.springframework.ws.transport.http.CommonsHttpMessageSender">
<constructor-arg ref="httpClient"></constructor-arg>
<property name="credentials" ref="credentials"/>
</bean>

<bean id="fdggwsapiorder" parent="abstractClient"
class="com.firstdata.fdggwsapi.client.FDGGWSAPIOrder">
<property name="marshaller" ref="marshaller"/>
<property name="unmarshaller" ref="marshaller"/>
<property name="messageSender" ref="messageSender"/>
</bean>

</beans>

The WebServiceTemplate class uses a URI as the message destination. The defaultUri property
lets you specify the destination URI. Spring-WS creates a WebServiceMessageSender for the
URI which is responsible for sending the XML message. You can set one or more message
senders using the messageSender or messageSenders properties of the WebServiceTemplate
class.

72

The following WebServiceMessageSender interfaces are available for sending messages via
HTTP:

e HttpUriConnectionMessageSender
¢ CommonsHttpMessageSender

The configuration sample above shows how to use CommonsHttpMessageSender to
authenticate to the FDGG Web Service.

In addition to a message sender, the WebServiceTemplate requires a Web service message
factory. The code in the following sections uses SaajSoapMessageFactory. This is the default
used by Spring-WS, if amessage factory is not specified via the messageFactory property.

16.2.2 Writing the Spring Client

WebServiceTemplate contains many convenience methods to send and receive web service
messages. There are methods that accept and return a Source and those that return a Result.
Additionally there are methods, which marshal and unmarshal objects to XML.

The preferred method of for creating messages and reading responses is to use the object/XML
mapping provided by Spring-WS. The following three sections provide instructions for using
object/XML mapping. If you must work directly with XML, see 16.2.2.4 Sending Direct XML
Request on page 77 for instructions.

16.2.2.1 Configuring Object/XML Mapping

In order to facilitate the sending of plain Java objects, the WebServiceTemplate has a number of
send methods that take an object as an argument. The marshalSendAndReceive method in the
WebServiceTemplate class delegates the conversion of the request object to XML to a
marshaller and the conversion of the response XML to an object to an unmarshaller. In order to
use the marshalling functionality, you have to set values for the marshaller and unmarshaller
properties of the WebServiceTemplate class. Spring provides support for the object/XML
mapping through its org.springframework.oxm framework.

The following sample code shows how to set
org.springframework.oxm.xmlbeans.XmlBeansMarshaller as the marshaller/'unmarshaller in the
applicationContext.xml file:

<bean id="marshaller"
class="org.springframework.oxm.xmlbeans.XmlBeansMarshaller"/>

<bean id="fdggwsapiorder" parent="abstractClient"
class="com.firstdata.fdggwsapi.client.FDGGWSAPIOrder">
<property name="marshaller" ref="marshaller"/>
<property name="unmarshaller" ref="marshaller"/>
</bean>

16.2.2.2 Generating XMLBean classes
Now you must generate Java objects based on the First Data Global Gateway Web Service API

schema files. This allows you to work directly with Java objects when writing the client
application.

73

To generate the Java objects, follow these steps:

¢ Download the following schema files and save them in a folder called schemas_us.

https://ws.firstdataglobalgateway.com/fdggwsapi/schemas us/fdggwsa
pi.xsd

https:// ws.firstdataglobalgateway.com /fdggwsapi/schemas us/vl.xsd
https://ws.firstdataglobalgateway.com/fdggwsapi/schemas us/al.xsd

¢ Provide the root schema as the parameter for the the xmlbean ANT task as below.

<taskdef name="xmlbean" classname="org.apache.xmlbeans.impl.tool.XMLBean"

classpathref="classpath"/>

<xmlbean schema="fdggwsapi.xsd" srcgendir="${gen.dir}"

classgendir="${bin.dir}" classpathref="classpath" download="true"/>

e The root schema imports the other two schemas (vl and al) using relative URLs as
shown in the code below. The directory structure on for your application needs to match
the directory structure shown in the schema file.

<xs:import namespace=" http://secure.linkpt.net/fdggwsapi/schemas us/v1"
schemaLocation="../schemas us/vl.xsd" />

<xs:import namespace=" http://secure.linkpt.net/fdggwsapi/schemas us/al"
schemaLocation="../schemas us/al.xsd" />

To compile the schemas into XML beans, you need to download XMLBeans 2.2.0. See the
following site for installation instructions:

http://xmlbeans.apache.org/documentation/conlinstallGuide.html
You can generate the classes using one of the following tools:

e scomp
e XMLBean Ant task

To generate the classes using the XMLBeans scomp tool (located in the XMLBeans bin
directory), enter the following command:

scomp —-compiler <path to external java compiler> -src <target directory for
generated .java files> -d <target binary directory for .class and .xsb files>
<xsd>

If you use Ant in your build, you can use the the XMLBean Ant task instead of scomp. You need
to download the xbean.jar from the XMLBeans developer kit at http://xmlbeans.apache.org/. The
build script will need to include a taskdef for xmlbean. Add the following code to the build script
to generate the classes for the schema:

<taskdef name="xmlbean" classname="org.apache.xmlbeans.impl.tool.XMLBean"
classpath="path/to/xbean.jar"/>

<xmlbean schema="<schema path>" srcgendir="<source generation directory>"
classgendir="<compiled class directory>" classpath="path/to/xbean.jar"/>

74

https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xsd
https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xsd
https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/a1.xsd
http://xmlbeans.apache.org/documentation/conInstallGuide.html
http://xmlbeans.apache.org/docs/2.0.0/guide/antXmlbean.html
http://xmlbeans.apache.org/

16.2.2.3 Writing the Client Program

The classes generated by XMLBeans allow your application work with Java objects instead of
XML.

The following code sample shows how to send an order request using Spring-WsS.
// imports go here
public class FDGGWSAPIOrder extends WebServiceGatewaySupport {

public FDGGWSAPIOrder (WebServiceMessageFactory messageFactory) {
super (messageFactory) ;

}
public void ccSale () {

try
{
// Instantiate the Order Request Document
FDGGWSApiOrderRequestDocument orderRequestDoc =
FDGGWSApiOrderRequestDocument.Factory.newlInstance () ;

// Instantiate the Order Request
FDGGWSApiOrderRequest orderRequest =
orderRequestDoc.addNewFDGGWSApiOrderRequest () ;

// Instantiate Transaction Object
Transaction tran = orderRequest.addNewTransaction () ;

// Create the Request
CreditCardTxType ccTxType = tran.addNewCreditCardTxType () ;
CreditCardTxType.Type.Enum sale = CreditCardTxType.Type.SALE;
ccTxType.setType (sale) ;

CreditCardData ccData = tran.addNewCreditCardData () ;
ccData.setCardNumber ("4012000033330026") ;
ccData.setExpMonth ("12") ;

ccData.setExpYear ("09") ;

tran.setCreditCardTxType (ccTxType) ;
tran.setCreditCardData (ccData) ;

Payment pp = tran.addNewPayment () ;
BigDecimal bd = new BigDecimal ("31.23");
pp.setChargeTotal (bd) ;

// Add the Request to the Transaction
tran.setCreditCardTxType (ccTxType) ;
tran.setCreditCardData (ccData) ;
tran.setPayment (pp) ;

// Add the Transaction to the Order Request
orderRequest.setTransaction (tran) ;

// Add the Order Request to the Order Request document

75

orderRequestDoc.setFDGGWSApiOrderRequest (orderRequest) ;

// Send the Request and get the Response
FDGGWSApiOrderResponseDocument orderResponseDoc

= (FDGGWSApiOrderResponseDocument) getWebServiceTemplate () .marshalSendAndRec
eive (orderRequestDoc) ;

FDGGWSApiOrderResponseDocument . FDGGWSApiOrderResponse response =
orderResponseDoc.getFDGGWSApiOrderResponse () ;

// Get the Response Results
System.out.println ("The result of Sale Transaction is
"+response.getTransactionResult ()) ;

System.out.println ("The Order Id of Sale Transaction is
"tresponse.getOrderId()) ;

System.out.println ("The TDate of Sale Transaction is
"tresponse.getTDate()) ;

System.out.println ("The Error Message is "+response.getErrorMessage()) ;

}
// Handling the Exception
catch (SoapFaultClientException e)
{
System.out.println ("The Exception is "+e.toString());
SoapFault sf = e.getSoapFault()
if(sf != null) {
DOMSource s = (DOMSource)sf.getSource() ;
if(sf.getFaultDetail () != null) {
Node detailNode = detailSource.getNode () ;
if (detailNode.getLocalName () .
equalsIgnoreCase ("detail")) {
System.out.println ("The Fault Detail is "+detailNode.getTextContent()) ;

}

}
}

public static void main (String[] args) {

// SSL Configuration for Client Certs
System.setProperty ("javax.net.ssl.keyStore", "/SSL/WS111901. .1.ks");

System.setProperty ("javax.net.ssl.keyStorePassword", "g6DbysArxl");

// Get the Application Context configuration
ApplicationContext applicationContext = new
ClassPathXmlApplicationContext (
"com/firstdata/fdggwsapi/client/applicationContext.xml") ;
FDGGWSAPIOrder fdggwsapiOrder = (FDGGWSAPIOrder)
applicationContext.getBean ("fdggwsapiorder", FDGGWSAPIOrder.class);

// FDGGWSAPI Order Sale Request
fdggwsapiOrder.ccSale () ;

76

}
}

16.2.2.4 Sending Direct XML Request

While object/ XML mapping is the preferred method for using Spring-Ws, if you must work

directly with the XML, that is also possible. The configuration discussed in the previous sections

for the applicationContext.xml file is not required.

The following code sample shows how to send an XML order request to the Web Service.

import java.io.IOException;
import javax.xml.transform.Source;

import org.springframework.context.ApplicationContext;
import

org.springframework.context.support.ClassPathXmlApplicationContext;

import org.springframework.core.io.Resource;
import

org.springframework.ws.client.core.support.WebServiceGatewaySupport;

import org.springframework.xml.transform.ResourceSource;
import org.springframework.xml.transform.StringResult;

public class SpringClient extends WebServiceGatewaySupport {
private Resource request;
public void setRequest (Resource request) {
this.request = request;

}

public void fdggwsapi () throws IOException {
Source requestSource = new ResourceSource (request) ;
StringResult result = new StringResult();
getWebServiceTemplate () . sendSourceAndReceiveToResult

(requestSource, result);

System.out.println (result) ;

}

public static void main(String[] args) throws IOException {

// SSL Configuration for Client Certs
System.setProperty ("javax.net.ssl.keyStore"™, "/SSL/WS111901.

.1.ks");

System.setProperty ("javax.net.ssl.keyStorePassword", "q6Dbyerxl");

// applicationContext.xml file contains the actual XML request.

ApplicationContext applicationContext =
new ClassPathXmlApplicationContext
("applicationContext.xml", SpringClient.class);
SpringClient springClient = (SpringClient)
applicationContext.getBean ("springClient") ;
springClient. fdggwsapi () ;
}

The following code sample show the configuration required for the applicationContext.xml file:

77

<?xml version="1.0" encoding="UTF-8"?>
<FDGGWSApiOrderRequest
xmlns=" http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<Transaction xmlns=
"http://secure.linkpt.net/fdggwsapi/schemas us/v1">
<CreditCardTxType>
<StoreId>111901</StoreId>
<Type>sale</Type>
</CreditCardTxType>
<CreditCardData>
<CardNumber>4012000033330028</CardNumber>
<ExpYear>12</ExpYear>
</CreditCardData>
<Payment>
<ChargeTotal>120.222</ChargeTotal>
</Payment>
</Transaction>
</FDGGWSApiOrderRequest>

16.2.3 SSL/Certificate Configuration
Your application must provide the client certificate for security.

As the server certificate is issued by a well-known and trusted authority, which is already listed in
the Trusted Store, you do not need to configure the server certificate.

The following code sample shows how to provide the keystore (.ks) file and password when
calling the web service.

// SSL Configuration for Client Certs

System.setProperty ("javax.net.ssl.keyStore", "/SSL/WS111901. .1.ks");
System.setProperty ("javax.net.ssl.keyStorePassword", "g6DbysArxl");

78

17 Customer Test Environment (CTE)

The Customer Test Environment (CTE) allows your Development team to test applications and
process transactions using the First Data Global Gateway Web Service API in a secure, no-cost
environment. The CTE mimics the production environment. There is not a setup fee or
processing charges when using the CTE.

To APPLY for a Test Account, access the following site, complete the form, and click Submit.

e http://www.firstdata.com/qg/apply test account.htm

You will receive a Welcome Email within 24 hours

To test your integration to the First Data Global Gateway Web Service API, use these URLs
listed below:

e https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/services/order.wsdl

e https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/services

e https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas us/fdggwsapi.xs
d

e https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas us/vl1.xsd

e https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas us/al.xsd

To transition your test account to a production account replace the CTE URLs with these listed
below:

e https://ws.firstdataglobalgateway.com/fdggwsapi/schemas us/fdggwsapi.xsd>

e https://ws.firstdataglobalgateway.com/fdggwsapi/schemas us/vl.xsd>

e https://ws.firstdataglobalgateway.com/schemas us/al.xsd>

79

http://www.firstdata.com/gg/apply_test_account.htm
https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/services/order.wsdl
https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/services
https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xsd
https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xsd
https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas_us/v1.xsd
https://ws.merchanttest.firstdataglobalgateway.com/fdggwsapi/schemas_us/a1.xsd
https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/fdggwsapi.xsd
https://ws.firstdataglobalgateway.com/fdggwsapi/schemas_us/v1.xsd
https://ws.firstdataglobalgateway.com/schemas_us/a1.xsd

18 The Tax Calculator

The Tax Calculator module calculates the state and municipal sales tax.

To use the tax calculator module, create a fulltax line in your configuration file on the secure
payment gateway. Next, send the fulltax line to Support in order to load it to the secure payment
gateway.

The fulltax line provides information needed for the tax module to calculate sales tax for an order.
The line includes entries for states where sales tax is charged. Entries are separated by a comma,
which may be followed by a space.

Example:

fulltax: TX 8.25, AL 7.00, FL 7.00, UT mun
Most entries in the list consist of the two-digit code for the state, followed by a space and the tax
rate charged for that state. See "U.S. State Codes" on page Error! Bookmark not defined. for
state codes.

TX 8.25
If the tax includes municipal tax, the listing is the two-digit state code followed by mun.

UT mun

Municipal taxes are calculated according to the salestax.txt file on the secure payment gateway
server. The salestax.txt file is updated monthly to ensure accuracy.

80

19 Shipping Calculator

With the shipping calculator, you can set rules for calculating shipping charges.

To use the shipping calculator module, you need to create a shipping and carrier file on the secure
payment gateway server. When you create your shipping file, send it to Support along with your
store number. The shipping calculator uses the shipping address and other information sent in the
shipping entity along with the appropriate pricing data defined in the shipping file to calculate the
charges.

The shipping file is a plain text file consisting of sets of code called zone type and zone definition
lines. An example of how these lines might appear in a shipping file is shown below.

zone type line
zone definition line
zone definition line
zone type line
zone definition line

The fields within both types of lines go together to define the shipping charges. The zone type line
describes the general shipping scheme, such as whether costs are based on item count, weight,
or price.

The zone definition line gives specific parameters on pricing for each element in that pricing
scheme. One or more zone definition lines must immediately follow each zone type line. Use
zone definition lines to set shipping prices based on specific geographic areas or types of carriers
to determine where price breaks occur. The fields within each line of code are separated by
double-colons. For fields with multiple values, use commas (countries, states) or single colons
(range definitions, prices).

Each zone type line is formatted with three fields:

e Tag Name
e Calculation Code
e Merchant-created range definitions

zone type::calculation method::rangel:range2...

You can create as many zone type lines as you need for your business. You can use a separate
zone type line for:

o Different shipping-cost calculations, such as the total weight or total cost of an order
e Separate freight or air transport carrier methods
e Division of the world shipping-zone prices

19.1 Creating Zone Type Lines
To create zone type lines:

1. Enter the following tag name. The zone type line must precede two colons:

81

zone type::

2. Determine how to charge customers for shipping your products and enter an applicable
code number after the tag name followed by double colons with no spaces.

zone type::1l::
zone type::3::

3. Create quantity ranges that share common pricing. Enter each range followed by a
single colon or a comma.

zone type::1::1-3,4-5,6+
zone type::3::1-24,25-50,51+

19.2 Calculation Method

There are five choices for calculating the shipping charges. Select the applicable calculation
methods for your business. Enter the code number after the Tag Name for each zone type line.

Method|Description

1 Charges based on the total number of items

Charges based on each item, then totaled

Charges based on the total weight of the order
Charges based on the weight of each item, then totaled
Charges based on the total price of the order

albhlwN

19.3 Assigning Ranges

A range is defined as a value or a set of values representing all items within a predetermined
category, which use the same shipping charge. A range can be a single number, two numbers
separated by a hyphen, or a number followed by a plus sign. You can specify an infinite number of
ranges. The number of ranges in a zone type line must correlate exactly with the number of prices
in the zone definition lines.

The following restrictions apply:

¢ Range definitions must be contiguous - you cannot skip numbers.
¢ Range definitions must start with the integer 1.
e The last range defined in each line must end with +.

A zone definition line specifies data that is required by the preceding zone type line of code.

Several fields are specific to each business including the zone name, the shipping carrier code,
and the shipping-cost codes for each range. See the example below.

zone name::country::carrier::range cost::range cost

19.4 Creating Zone Definition Lines
To create zone definition lines:

1. Enter a zone name for each shipping situation followed by two colons.

82

northamerica::

2. Select the applicable countries for your zone name followed by double colons. Use the
two-digit country codes. See "Country Codes" on page Error! Bookmark not
defined..

northamerica::US,MX,CA::

For the U.S. only, enter each applicable two-letter state code after the country code,
followed by two colons.

westcoast::US::CA,OR,WA,HTI::

3. Determine the different shipping methods for your business. Enter one merchant-
defined shipping carrier code only.

northamerica::US,MX,CA::1::

4. Determine the shipping cost for each range you specified in the zone type line. Enter
the applicable shipping cost, followed by a colon or a comma.

zone type::1::1-3,4-5,6+
northamerica::US::MX::CA::1::25,40,75 NOTE:

Each shipping cost value in the zone definition line must match a range in the zone type line.

You determine the zone name for each zone definition line. Each name is an alphabetic string
containing less than 20 letters and cannot include blank spaces.

If you offer different types of shipping, such as courier, overnight, two day, or ground transport, the
zone definition line can list a shipping carrier option in the form of an integer. This will allow you to
charge different amounts for premium shipping services.

The zone definition contains the actual charges for shipping items in the range specified by the
preceding zone type. Merchants determine the charges for their products.

The following rules apply when you are creating zone definition code:

e If you are shipping internationally, the U.S. state code in a zone definition line is
ignored.

e If shipping prices are the same for all U.S. states, you do not need to name the states
individually.

¢ If you have a few exceptions for shipping, such as AK and HlI, you can define a zone for
them and include the remaining states in a non-specific U.S. zone.

e Any number of zone definition lines may follow a zone type line.

e The zone name and range charges must have values; all other fields can be blank.

¢ When the shipping calculator looks for a shipping file match, a blank field, such as
carrier type, is treated as a match.

83

20 Troubleshooting

20.1 Merchant Exceptions

<detail>
XML is not wellformed: Premature end of message.
</detail>

Explanation: You have sent an empty message. The message does not contain a SOAP
message or any other text in the HTTP body.

<detail>
XML is not wellformed: Content is not allowed in prolog.
</detail>

Explanation: The First Data Global Gateway API cannot interpret the content as XML.

<detail>

XML is not wellformed:

XML document structures must start and end within the same entity.
</detail>

Explanation: Your SOAP message is missing the end tag of the first open tag.

<detail>
XML is not wellformed:
The element type "SOAP-ENV:Body" must be terminated
by the matching end-tag "</SOAP-ENV:Body>".
</detail>

Explanation: An open internal tag (not the top level tag) is missing the end tag. In this example,
the end tag </SOAP-ENV:Body> is missing.

<detail>
XML is not wellformed:
Element type "irgend" must be followed by either attribute
specifications, ">" or "/>".

</detail>

Explanation: A tag is malformed. In this example, a “>” character is missing for the tag irgend.

<detail>

XML is not wellformed:

Open quote is expected for attribute "xmlns:ns3"

associated with an element type "ns3:FDGGWSApiOrderRequest".
</detail>

Explanation: The value of one attribute is not enclosed in quotation marks. In the Web Service
API, XML attributes are used only for the namespaces.

<detail>
XML is not wellformed:
The prefix "fdggwsapi" for element "fdggwsapi:FDGGWSApiOrderRequest"
is not bound.

84

</detail>

Explanation: The name space fdggwsapi is not declared. To declare a name space use the
xmlns prefix. Add the following as an attribute to the FDGGWSApiOrderRequest or
FDGGWSApiAction request element:

xmlns: fdggwsapi=
http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi

<detail>

XML is not wellformed:

The prefix "xmln" for attribute "xmln:ns2" associated

with an element type "ns3:FDGGWSApiOrderRequest" is not bound.
</detail>

Explanation: You must use the pre-defined namespace xmlins to declare a custom namespace.
In this example, the prefix is written as xmIn and not as xmins.

<detail>
XML is not wellformed:
Unable to create envelope from given source
because the namespace was not recognized
</detail>

Explanation: The message could be interpreted as an XML message and the enclosing SOAP
message is correct, but the included APl message in the soap body has no name spaces or the
name spaces are not declared correctly. The correct name spaces are described in the XSD.

<detail>
XML is not wellformed:
The processing instruction target matching " [xX] [mM] [1L]"
is not allowed.

</detail>

Explanation: The SOAP body must not contain the XML declaration <?xml ... ?>.

<detail>
Unexpected characters before XML declaration
</detail>

Explanation: The XML must start with <?xml. Do not include an empty line or another white
space character in front of the XML.

<detail>
XML is not a SOAP message:
Unable to create envelope from given source
because the root element is not named "Envelope"
</detail>

Explanation: The XML appears to be valid but is not a SOAP message. Enclose your message
in a SOAP envelope.

<detail>

XML is not a valid SOAP message:
Error with the determination of the type.

85

http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services

Probably the envelope part is not correct.
</detail>

Explanation: The SOAP body tag is missing.

<detail>

Source object passed to ''{0}'' has no contents.
</detail>

Explanation: The SOAP body is empty.

<detail>
Included XML is not a valid FDGGWS API message:

unsupported top level {namespace}tag "irgendwas" in the soap body. Only
one of [

{http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi}FDGGWSApiActionRe
quest,

{http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi}FDGGWSApiOrder
Request

] allowed.
</detail>

Explanation: The first tag in the Web Service APl message contained in the SOAP body must

be either FDGGWSApiActionRequest or FDGGWSApiOrderRequest. In this case, the tag has no
namespace.

<detail>
Included XML is not a valid FDGGWS API message:
unsupported top level {namespace}tag

"{http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi}FDGGWSApiOrderRe
quest" in the soap body. Only one of [

{http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi}FDGGWSApiActionRe
quest,

{http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi}FDGGWSApiOrderReq
uest

] allowed.
</detail>

Explanation: The first tag in the including Web Service APl message contained in the SOAP

body must be either FDGGWSApiActionRequest or FDGGWSApiOrderRequest. In this case, the
namespace is wrong.

<detail>

cvc-pattern-valid:

Value '1.234' is not facet-valid with respect to pattern
"([1-9] ([0-91{0,12}))2[0-9] (\.[0-9]{1,2})?"' for type
'#AnonType ChargeTotalAmount'

cve-type.3.1.3:

The value '1.234' of element 'ns3:ChargeTotal' is not wvalid.
</detail>

Explanation: The value of a tag does not correspond with the declaration in the XSD. The value
has three decimal places but the XSD only allows two.

<detail>

86

http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services

cvc-complex-type.2.4.a:
Invalid content was found starting with element 'ns2:ExpYear'.
One of '{"http://secure.linkpt.net/fdggwsapi/schemas us/v1":ExpMonth}"'
is expected.
</detail>

Explanation: The tags must be included in the order declared in the XSD. In this case the tag
ExpMonth is expected and not ExpYear.

<fdggwsapi : FDGGWSApiOrderResponse Xmlns:fdggwsapi=
"http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<fdggwsapi:CommercialServiceProvider/>
<fdggwsapi:TransactionTime>
Tue Nov 03 13:34:02 2009
</fdggwsapi:TransactionTime>
<fdggwsapi:TransactionID/>
<fdggwsapi:ProcessorReferenceNumber/>
<fdggwsapi:ProcessorResponseMessage/>
<fdggwsapi:ErrorMessage>
SGS-005002: The merchant is not setup to support the requested
service.
</fdggwsapi:ErrorMessage>
<fdggwsapi:0rderId>
A-bf98ecb3-c3f7-44e2-97cf-5c965ca84£93
</fdggwsapi:0rderId>
<fdggwsapi : ApprovalCode/>
<fdggwsapi : AVSResponse/>
<fdggwsapi:TDate/>
<fdggwsapi:TransactionResult>
DECLINED
</fdggwsapi:TransactionResult>
<fdggwsapi : ProcessorResponseCode/>
<fdggwsapi : ProcessorApprovalCode/>
<fdggwsapi:CalculatedTax/>
<fdggwsapi:CalculatedShipping/>
<fdggwsapi:TransactionScore/>
<fdggwsapi :AuthenticationResponseCode/>
</fdggwsapi : FDGGWSApiOrderResponse>

Explanation: The type of transaction submitted is not allowed for this merchant. If you receive
this result for a transaction type, which is included in your agreement, please contact our
technical support team.

<fdggwsapi:FDGGWSApiOrderResponse xmlns:fdggwsapi=
"http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi'">
<fdggwsapi:CommercialServiceProvider/>
<fdggwsapi:TransactionTime>
Tue Nov 03 17:10:51 2009
</fdggwsapi:TransactionTime>
<fdggwsapi:TransactionID/>
<fdggwsapi : ProcessorReferenceNumber/>
<fdggwsapi : ProcessorResponseMessage/>
<fdggwsapi:ErrorMessage>

87

http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services

SGS-005005:

Duplicate transaction.

</fdggwsapi:ErrorMessage>

<fdggwsapi

:OrderId>

A-e981664e-546f-4db9-895b-6633ee163£69
</fdggwsapi:0rderId>

<fdggwsapi
<fdggwsapi

<fdggwsapi:
<fdggwsapi:
<fdggwsapi:
<fdggwsapi:
<fdggwsapi:
:CalculatedShipping/>
<fdggwsapi:
:AuthenticationResponseCode/>

<fdggwsapi

<fdggwsapi

:ApprovalCode/>
:AVSResponse/>

TDate/>
TransactionResult>FRAUD</fdggwsapi:TransactionResult>
ProcessorResponseCode/>

ProcessorApprovalCode/>

CalculatedTax/>

TransactionScore/>

</fdggwsapi : FDGGWSApiOrderResponse>

Explanation: This transaction is a duplicate transaction. Transactions with the same data
submitted within a configurable amount of time are rejected as duplicate transactions.

<fdggwsapi :FDGGWSApiOrderResponse xmlns:fdggwsapi=
"http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi">
<fdggwsapi:CommercialServiceProvider/>
<fdggwsapi:TransactionTime>
Tue Nov 03 14:07:13 2009
</fdggwsapi:TransactionTime>
<fdggwsapi:TransactionID/>
<fdggwsapi : ProcessorReferenceNumber/>
<fdggwsapi:ProcessorResponseMessage/>
<fdggwsapi:ErrorMessage>
SGS-002311: Internal Error.
</fdggwsapi:ErrorMessage>
<fdggwsapi:0rderId>
A-8a07eaad-26d7-4233-b13a-8a102287f6c8
</fdggwsapi :0rderId>

<fdggwsapi

<fdggwsapi:
<fdggwsapi:
<fdggwsapi:
<fdggwsapi:
<fdggwsapi:
<fdggwsapi:
<fdggwsapi:
:AuthenticationResponseCode/>

<fdggwsapi

:ApprovalCode/><fdggwsapi : AVSResponse/>

TDate>1257286033</fdggwsapi:Thate>
TransactionResult>DECLINED</fdggwsapi:TransactionResult>
ProcessorResponseCode/>

ProcessorApprovalCode/>

CalculatedTax/>

CalculatedShipping/>

TransactionScore/>

</fdggwsapi : FDGGWSApiOrderResponse>

Explanation: The SOAP Request XML might be incorrect. Check for the correct namespaces
for the tags.

<fdggwsapi : FDGGWSApiOrderResponse xmlns:fdggwsapi=
"http://secure.linkpt.net/fdggwsapi/schemas us/fdggwsapi'">
<fdggwsapi:CommercialServiceProvider/>
<fdggwsapi:TransactionTime>
Tue Nov 03 17:10:51 2009
</fdggwsapi:TransactionTime>

88

http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services
http://secure.linkpt.net/
https://www.staging.linkpointcentral.com/fdggwsapi/services
https://www.staging.linkpointcentral.com/fdggwsapi/services

<fdggwsapi:TransactionID/>
<fdggwsapi : ProcessorReferenceNumber/>
<fdggwsapi:ProcessorResponseMessage/>
<fdggwsapi:ErrorMessage>
SGS-005999: There was an unknown error in the database.
</fdggwsapi:ErrorMessage>
<fdggwsapi :OrderId>
A-e981664e-546f-4db9-895b-6633ee163£69
</fdggwsapi :0rderId>
<fdggwsapi : ApprovalCode/>
<fdggwsapi : AVSResponse/>
<fdggwsapi:TDate/>
<fdggwsapi:TransactionResult>DECLINED</fdggwsapi:TransactionResult>
<fdggwsapi : ProcessorResponseCode/>
<fdggwsapi:ProcessorApprovalCode/>
<fdggwsapi:CalculatedTax/>
<fdggwsapi:CalculatedShipping/>
<fdggwsapi:TransactionScore/>
<fdggwsapi:AuthenticationResponseCode/>
</fdggwsapi : FDGGWSApiOrderResponse>

Explanation: You may have tried to void a credit card transaction as a different payment type.

20.2 cURL Login Error Messages

* unable to set private key file: 'C:\API\config\WS120666668. .1.key' type
PEM

* Closing connection #0

curl: (58) unable to set private key file: 'C:\API\config\

WS120666668. .1.key’ type PEM

Explanation: Your keystore and password do not match. Ensure that you used the right
keystore and password. Check that you used the WS<storeld>. .1.pem file. You can append

.cer to the file name so that you can open the certificate with a double click. The certificate must

be exposed for your store. Remove the extension .cer after the check.

<html>
<head>
<title>Apache Tomcat/5.5.20 - Error report</title>
<style>
</style>
</head>
<body>
<h1>HTTP Status 401 -</hl1>
<HR size="1" noshade="noshade">
<p>
type
Status report
</p>
<p>
message
<u></u>
</p>
<p>

89

description
<u>This request requires HTTP authentication () .</u>
</p>
<HR size="1" noshade="noshade">
<h3>Apache Tomcat/5.5.20</h3>
</body>
</html>

Explanation: Your user ID and/or password are incorrect. The First Data Global Gateway Web
Service API accepted your certificates.

20.3 Java Client Login Error Messages

Jjava.io.IOException: Keystore was tampered with, or password was incorrect

Explanation: Your keystore password does not match. You can check the password with the
keytool of the JDK. Password is case sensitive. Run the following command:

keytool -list -v -keystore <absolute path of your WS{store id}. .l.ks
keystore> -storepass <your keystore password>

javax.net.ssl.SSLHandshakeException:
sun.security.validator.ValidatorException: No trusted certificate found

Check the cacerts file is available under {JAVA_HOME}/jre/lib/security folder

90

21 Installing the Client Certificate

The following instructions assume you are running ASP on Microsoft IS 5.1 on Windows XP. To
install the client certificate, follow these steps:

1. Select Run from the Start menu. Enter mmc in the Run dialog and click OK.
2. From the File menu, select Add/Remove Snap-In.

‘it Consoled - [Console Root]

“ﬁ]‘ ‘ Action View Favorites ‘Window Help ;Ii'ﬁ
& New Corll |
L Open... Ctrl+0
3 save Ctrl+s
Save:fsi.. - There are no items to show in this view.

Add/Remove Snap-in... Cerl+
Options...

1 CAWINDOWS|system32\secpol.msc
2 CAWINDOWS\, . .\compmgmt.msc
3 CAWINDOWS\, . \lusrmar.msc

Exit

IEnabIes vou ko add snap-ins to or remove them from the snap-in console.

3. Click Add.

91

Add/Remove Snap-in @

Standalone | Extensions |

Use this page to add or remove a stand-alone snap-in from the console.

Snap-ins added to: [@ v| &

Description

[OK][Cancel]

4. Under Snap-In, select Certificates and click Add.

Add Standalone Snap-in
Awailable standalone snap-ins:

Snap-in Vendor »
3}3 MET Framework 1.1 Configuration Microsoft Corporation
ﬁ \MNET Framework 2.0 Configuration Microsoft Corporation
aflActiveX Control Microsoft Corporation

% Certificates Microsoft Corporation H
@Component Services Microsoft Corporation
QComputer Management Microsoft Corporation
gDevice Manager Microsoft Corporation
s‘\-Disk Defragmenter Microsoft Corp, Execut...
gDisk Management Microsoft and YERITAS. ..
@Event Viewer Microsoft Corporation v
Description

The Certificates snap-in allows you to browse the contents of the
certificate stores for yourself, a service, or a computer.

[Add] [Close]

5. Select the account for which you want to manage the certificates. Since IS uses the
computer account, choose Computer Account and click Next.

Certificates snap-in @

This shap-in will always manage certificates for:
(O My user account
O Service account

(3) Computer account

L Next > J[Cancel

6. Choose Local Computer and click Finish.

© N

Select Computer @

Select the computer you want this snap-in to manage.
This shap-in will always manage:

() Local computer: [the computer this console is running on)

O ¬her computer; [

only applies if you save the console.

[Allow the selected computer ta be changed when launching from the command line. This

[< Back][Finish J[Cancel

Click Close and then OK.

Expand the Certificates (Local Computer) tree. The client certificate will be installed in

the Personal folder.

Right click the Certificates folder, select All Tasks, and click Import. The Certificate

Import Wizard displays.

93

i Consoled - [Console RootiCertificates (Local Computer)]
'ﬁ; File Action View Favorites ‘Window Help

] B
(13 Console Root Logical Store Name
= EJ Certificates {Local Computer) || @23 Bereon
L:J Personal (ATrustel Find Certificates. ..
1-[_] Trusted Root Certification £ (C3Ent
(] Enterprise Trust Dl:t:r'; All Tasks ¥ Find Certificates...
‘, g frntesrtr::c:aﬁ;eertslﬁcatwn f (dTruste| Mew Window from Here Request New Certificate...
L ru: uoli T ~
E (
1+ (] Untrusted Certificates :\lUn.trus Refresh i ans
(C) Third-Party Root Certificat|| — Third-F s
(2 Trusted People (Truste] Help
(L] Other People Caother People
([SPC [spc
& | >

Add a certificate to a store

10. Click Next.

X

Welcome to the Certificate Import
Wizard

This wizard helps you copy certificates, certificate trust
lists, and certificate revocation lists from your disk to a
certificate store,

A certificate, which is issued by a certification authority, is
a confirmation of your identity and contains information
used to protect data or to establish secure network
connections. A certificate store is the system area where
certificates are kept.

To continue, click Mext.

L,N,eXF?] [Cancel]

11. Choose your client certificate p12 file and click Next.

94

Certificate Import Wizard @

File to Import
Specify the file you want ko import.

File name:
l ’ [Browse...]

Mote: More than one certificate can be stored in a single file in the Following Formats:
Personal Information Exchange- PKCS #12 (.PFX,.P12)
Cryptographic Message Syntax Standard- PKCS #7 Certificates {.P7B)
Microsoft Serialized Certificate Store {,55T)

[< Back][Mext >][Cancel]

12. Enter the client certificate installation password and click Next.

Certificate Import Wizard @

Password
To maintain security, the private key was protected with a password.

Type the password for the private key.

Password:
okokokok ok

[]Mark this key as exportable. This will allow you ta back up or transport your
keys at a later time.

[< Back][Mext >][Cancel]

13. Select Place all certificates in the following store and browse for the Personal folder
if not yet displayed. Click Next.

95

Certificate Import Wizard @

Certificate Store
Certificate stores are system areas where certificates are kept.

‘Windows can automatically select a certificate store, or you can specify a location for

() Automatically select the certificate store based on the type of certificate

Certificate store:

| Personal | | Browse...

[< Back][Mext =][Cancel]

14. Check the displayed settings and click Finish. Your client certificate is now installed in

the local computer’s personal certificates store. Now, IS (running ASP) can find the client

certificate when communicating with another server via HTTP.

Certificate Import Wizard @

Completing the Certificate Import
Wizard

‘You have successfully completed the Certificate Import
wizard,

You have specified the following settings:
Certificate Store Selected by User Personal

Content PFX
File Name C:\Documents and Se/
] >
[< Back][Finish] [Cancel]

Next, you need to grant the 1IS user access to the client certificate private key. To do so, first
download the WinHttpCertCfg tool from Microsoft. Use the following URL:

http://mwww.microsoft.com/downloads/details.aspx?familyid=c42e27ac-3409-40e9-8667-
C748e422833f&displaylang=en

To grant access to the 1IS user, using the command line, navigate to the directory where you
installed WinHttpCertCfg and enter the following command:

winhttpcertcfg -g -c¢ LOCAL MACHINE\My -s WS101l. .1 -a IWAM MyMachine

wWs101. .1 isthe name of the client certificate. Replace this value with the name of your client
certificate. The name should be in the format WS<store_ID>. .1. Verify this value when you
install the client certificate using the instructions above.

IWAM MyMachine is the IS user name. IIS 5.1 uses 1waMm MachineName by default. Replace
MachineName with the name of your machine. For example, if your machine has the name
[ISServerMachine, the 1IS user will be called 1waM II1SServerMachine. Other IIS versions might
use a different naming scheme. If you do not know your machine name or 1S user name, check
the 11IS documentation and contact your administrator.

97

F:.' First Data.

© 2010 First Data Corp. All rights reserved.

98

